• Title/Summary/Keyword: changes in natural frequencies

Search Result 153, Processing Time 0.029 seconds

Damage Detection of Beam by Using the Reduction Ratio of Natural Frequency and the Neural Network (고유진동수의 감소율과 신경망을 이용한 보의 손상평가)

  • Ghoi, Hyuk;Lee, Gyu-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.153-165
    • /
    • 2006
  • A damage in a structure changes its dynamic characteristics such as natural frequencies, damping ratios, and the mode shapes. In this paper the effort has been spent in obtaining the characteristics of the reduction ratio in natural frequencies and the damage detection is performed using the reduction ratios. Most of the emphasis has been on using the artificial neural network to determine the location and the extent of the damage as well as the existence of the damage. The data for learning and verifying neural network were obtained from the analytical analysis. The data have no errors. Considering the real measurements the data including errors which are difference this study between other studies also were used for neural network. The position and extent of the damage can be detected using the neural network trained by reduction ratios of natural frequencies.

Analysis of the Motion of a Flexible Beam Fixed on a Moving Cart and Carrying a Concentrated Mass (이동 대차 위에 고정되고 집중질량을 갖는 유연보의 운동해석)

  • Park, Sang-Deok;Jeong, Wan-Gyun;Yeom, Yeong-Il;Lee, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1940-1951
    • /
    • 1999
  • In this paper, the equations of motion of a Bernoulli-Euler cantilever beam fixed on a moving cart and carrying a lumped mass concentrated at an arbitrary position along the beam is derived. The motion of the beam-mass-cart system is analyzed through unconstrained modal analysis, and a unified characteristic equation for calculating the natural frequencies of the system is obtained. The changes of natural frequencies and the corresponding mode shapes with respect to the changes in mass ratios of the system and to the concentrated position of the lumped mass are investigated with the frequency equation, which can be generally applied to this kind of systems. The exact and assumed-mode solutions including the dynamics of the base cart are obtained, and the open-loop responses of the system by arbitrarily designed forcing function are given by numerical simulations. The results match well with physical phenomena even at the extreme cases where the concentrated mass is attached to the bottom and to the top of the beam.

Analysis of Natural Frequency of Simple Steel Outfitting Structure in Engine Room (기관실 단순 철의장품 모델 고유 진동수 해석)

  • Jung, C.S.;Kim, D.S.;Cho, S.A.;Chang, S.I.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.106-111
    • /
    • 2006
  • The steel outfitting structures installed in engine room are vibrated by an excitation of the engine and the propeller. Vibration problems such as cracks and fitting breakages are mainly induced at the near range of the resonance. The excitation frequency estimation is possible by engines and propeller specifications, but the natural frequency of a steel outfitting structure is not easily estimated due to the complication and variety of the designed shape. This paper represents natural frequency data of simple steel outfitting structures. As a vibration analysis tool, MSC/NASTRAN was used to calculate natural frequencies. Natural frequencies were compared in case of the shape and boundary condition changes of simple models, and anti-vibration models of the steel outfitting structures were presented on the basis of results.

  • PDF

AM-FM Decomposition and Estimation of Instantaneous Frequency and Instantaneous Amplitude of Speech Signals for Natural Human-robot Interaction (자연스런 인간-로봇 상호작용을 위한 음성 신호의 AM-FM 성분 분해 및 순간 주파수와 순간 진폭의 추정에 관한 연구)

  • Lee, He-Young
    • Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.53-70
    • /
    • 2005
  • A Vowel of speech signals are multicomponent signals composed of AM-FM components whose instantaneous frequency and instantaneous amplitude are time-varying. The changes of emotion states cause the variation of the instantaneous frequencies and the instantaneous amplitudes of AM-FM components. Therefore, it is important to estimate exactly the instantaneous frequencies and the instantaneous amplitudes of AM-FM components for the extraction of key information representing emotion states and changes in speech signals. In tills paper, firstly a method decomposing speech signals into AM - FM components is addressed. Secondly, the fundamental frequency of vowel sound is estimated by the simple method based on the spectrogram. The estimate of the fundamental frequency is used for decomposing speech signals into AM-FM components. Thirdly, an estimation method is suggested for separation of the instantaneous frequencies and the instantaneous amplitudes of the decomposed AM - FM components, based on Hilbert transform and the demodulation property of the extended Fourier transform. The estimates of the instantaneous frequencies and the instantaneous amplitudes can be used for modification of the spectral distribution and smooth connection of two words in the speech synthesis systems based on a corpus.

  • PDF

A Study on Flow-Induces Vibration of Tube Array in Uniform Crossflow(I) (균일 유동장내 튜브 배열의 유동관련 진동에 관한 연구 (I))

  • 이기백;김봉환;양장식;김문경;장석상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.924-932
    • /
    • 1992
  • This paper presents the results of an experimental study on the characteristics of the vortex- induced vibration of an elastically supported circular cylinder in the cross air flow. For a range of velocities, power spectral densities of the signals from a hot-wire anemometer placed in the wake of an oscillating circular cylinder and gap sensors placed in the both ends of a circular cylinder were obtained to determine vortex-shedding frequencies, natural frequencies and vibrating frequencies of a cylinder. The effects of slots in the test section on vortex shedding and cylinder oscillation were investigated. The present study covered the reduced velocity range 1.0 .leg. Ur .leg. 64.6. The response characteristics of the cylinder has been shown to vary extensively, depending on the slots in the test section as well as on the reduced velocity. For an elastically supported cylinder, a purely translation mode oscillation was observed at a low velocity, however a rotation mode oscillation was often superposed for higher velocities. These two oscillating frequencies were equal to their natural frequencies irrespective of the changes of free stream velocities.

Detection of damage in truss structures using Simplified Dolphin Echolocation algorithm based on modal data

  • Kaveh, Ali;Vaez, Seyed Rohollah Hoseini;Hosseini, Pedram;Fallah, Narges
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.983-1004
    • /
    • 2016
  • Nowadays, there are two classes of methods for damage detection in structures consisting of static and dynamic. The dynamic methods are based on studying the changes in structure's dynamic characteristics. The theoretical basis of this method is that damage causes changes in dynamic characteristics of structures. The dynamic methods are divided into two categories: signal based and modal based. The modal based methods utilize the modal properties consisting of natural frequencies, modal damping and mode shapes. As the modal properties are sensitive to changes in the structure, these can be used for detecting the damages. In this study, using dynamic method and modal based approach (natural frequencies and mode shapes), the objective function is formulated. Then, detection of damages of truss structures is addressed by using Simplified Dolphin Echolocation algorithm and solving inverse optimization problem. Many scenarios are used to simulate the damages. To demonstrate the ability of the algorithm, different truss structures with several multiple elements scenarios are tested using a few runs. The influence of the two different levels of noise in the modal data for these scenarios is also considered. The last example of this article is investigated using a different mutation. This mutation obtains the exact answer with fewer loops and population by limited computational effort.

Numerical investigation on behaviour of cylindrical steel tanks during mining tremors and moderate earthquakes

  • Burkacki, Daniel;Wojcik, Michal;Jankowski, Robert
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.97-111
    • /
    • 2020
  • Cylindrical steel tanks are important components of industrial facilities. Their safety becomes a crucial issue since any failure may cause catastrophic consequences. The aim of the paper is to show the results of comprehensive FEM numerical investigation focused on the response of cylindrical steel tanks under mining tremors and moderate earthquakes. The effects of different levels of liquid filling, the influence of non-uniform seismic excitation as well as the aspects of diagnosis of structural damage have been investigated. The results of the modal analysis indicate that the level of liquid filling is really essential in the structural analysis leading to considerable changes in the shapes of vibration modes with a substantial reduction in the natural frequencies when the level of liquid increases. The results of seismic and paraseismic analysis indicate that the filling the tank with liquid leads to the substantial increase in the structural response underground motions. It has also been observed that the peak structural response values under mining tremors and moderate earthquakes can be comparable to each other. Moreover, the consideration of spatial effects related to seismic wave propagation leads to a considerable decrease in the structural response under non-uniform seismic excitation. Finally, the analysis of damage diagnosis in steel tanks shows that different types of damage may induce changes in the free vibration modes and values of natural frequencies.

Characteristics of Friction Noise with Changes of the Natural Frequencies in the Reciprocating Motion (왕복운동에서의 고유주파수 변화에 따른 마찰소음 특성 연구)

  • Choi, Hoil;Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2014
  • Experimental study is conducted for investigating the characteristics of friction-induced noise with respect to the variation of system geometry. In this study, a vertically fixed rod is in contact with the reciprocating plate which is controlled by the step motor. Friction noise is generated during the reciprocating motion due to the frictional contact between the plastic pin and the aluminum plate. The frequencies of the friction noise are changed when the height of the rod varies. However, it is found that the vibration modes involved in the friction noise are not changed. It implies that the unstable modes remain unstable regardless of the change of the system geometry, and thus, there are the certain mode shapes which are likely to produce friction noise.

Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm

  • Shyamala, Prashanth;Mondal, Subhajit;Chakraborty, Sushanta
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • Detection of damages in fibre reinforced plastic (FRP) composite structures is important from the safety and serviceability point of view. Usually, damage is realized as a local reduction of stiffness and if dynamic responses of the structure are sensitive enough to such changes in stiffness, then a well posed inverse problem can provide an efficient solution to the damage detection problem. Usually, such inverse problems are solved within the framework of pattern recognition. Support Vector Machine (SVM) Algorithm is one such methodology, which minimizes the weighted differences between the experimentally observed dynamic responses and those computed using the finite element model- by optimizing appropriately chosen parameters, such as stiffness. A damage detection strategy is hereby proposed using SVM which perform stepwise by first locating and then determining the severity of the damage. The SVM algorithm uses simulations of only a limited number of damage scenarios and trains the algorithm in such a way so as to detect damages at unknown locations by recognizing the pattern of changes in dynamic responses. A rectangular fiber reinforced plastic composite plate has been investigated both numerically and experimentally to observe the efficiency of the SVM algorithm for damage detection. Experimentally determined modal responses, such as natural frequencies and mode shapes are used as observable parameters. The results are encouraging since a high percentage of damage cases have been successfully determined using the proposed algorithm.

Optimal Shape Design of Pyeongyeong Considering Structural and Acoustical Characteristics (구조-음향 특성을 고려한 편경의 최적 형상 설계)

  • Lee, Seungmok;Kang, Minseok;Lee, Jin Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.337-344
    • /
    • 2014
  • An optimal shape design algorithm is suggested to systematically design a traditional Korean musical instrument, the Pyeongyeong. The Pyeongyeong consists of 16 different chime stones called Gyeongpyeons. The first natural vibration frequency of each Gyeongpyeon must be adjusted to its target frequency, which is determined by the traditional sound tuning method. The second and third natural frequencies must be proportional to the first natural frequency with a specific ratio (1:1.498:2.378). The key idea in our suggested design algorithm is to use the sensitivity of natural frequencies to the variation in the length of each side of a Gyeongpyeon. The dimensions of five different Gyeongpyeons are determined by following the suggested algorithm. Changes in natural frequencies with respect to local thickness variation are closely investigated to compensate for errors that may occur during manufacturing.