• Title/Summary/Keyword: change of coastal area

Search Result 486, Processing Time 0.029 seconds

Selection of the Auxin and ACC Deaminase Producing Plant Growth Promoting Rhizobacteria from the Coastal Sand Dune Plants (Auxin과 ACC Deaminase를 생산하는 사구식물 복원용 근권세균의 선발)

  • Lim, Jong-Hui;Kim, Jong-Guk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.268-275
    • /
    • 2008
  • In order to develop the multi-functional rhizobacteria that can exert positive effect on the growth of plants growing in the coastal sand dune located along East Coast of Korea, rhizospheral bacteria of 11 different plants from this area were isolated 1,330 rhizobacteria. Among these, 23 strains were able to produce auxin and had spectrum of antagonism toward various phytopathogenic microbes. To know the mechanism of this antifungal activity, these 23 strains were subjected to further analyses; 19 strains of these produced siderophore as determined by color reaction on CAS-blue plate, 4 strains produced antifungal cellulase as judged by color change on CMC-Congo red plate, 17 strains were able to utilized insoluble phosphate salts, also determined by clear zone formation on PVK medium. Identification of the strain was assigned to all 23 strains by l6s rDNA sequence analysed, and all were identified to be in the genus of Bacillus and Pseudomonas. One strain of these, denoted Pseudomonas fluorescens IB4-14, showed ACC deaminase activity which is known to be involved in the resistance of environmental stress such as salt and drought. Also, P. fluorescens IB4-l4 showed the germination stimulation and roots growth promoting activity on the in vivo assay of Lysimachia mauritiana Lam. (spoonleaf yellow loosestrife).

Relation of Freshwater Discharge and Salinity Distribution on Tidal Variation around the Yeomha Channel, Han River Estuary (한강하구 염하수로 주변의 조석변화에 따른 염분분포와 담수와의 상관관계)

  • Yoon, Byung-Il;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.4
    • /
    • pp.269-276
    • /
    • 2012
  • Salinity distribution in estuary and tidal river is presented by many parameters including tidal forcing, river discharge and geographical effect. Understanding the characteristics of salinity structure is very important in the aspect of water-quality, ecological, and engineering viewpoint. Field measurement was carried out to study the distribution of salinity structure at 2 surface stations at Yeomha channel in the Han River estuary. The results of short- and long-term salinity change according to short and long tidal variability is investigated. For analyzing the axial salinity distribution at Yeomha channel, the salinity data from NFRDI is used in this study. The relationship between freshwater discharge and salinity distribution is represented through the nonlinear regression equation. The empirical equation for salt intrusion length scale, including tide, river discharge, and topographical effect is presented. As the comparison of empirical equation and existing data collected in study area, the characteristic of salt intrusion length and salinity distribution is changed by tide, fresh water, and geographical effect.

Sea Level Rise due to Global Warming in the Northwestern Pacific and Seas around the Korean Peninsula (지구온난화에 의한 북서태평양 및 한반도 근해의 해수면 상승)

  • Oh, Sang-Myeong;Kwon, Seok-Jae;Moon, Il-Ju;Lee, Eun-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.236-247
    • /
    • 2011
  • This study investigates sea level (SL) rise due to global warming in the Northwestern Pacific (NWP) and Seas around the Korean peninsula (KP) using outputs of IPCC AR4 climate models. Particularly, components of the SL rise induced by a local steric effect, which was not considered in most climate models, were computed using model-projected 3-dimensional temperature and salinity data. Analysis of the SL data shows that the ratio of the SL rise in the NWP and KP was about two times higher than that in global mean and particularly the ratio in the Kuroshio extension region was the highest. The SL rises over 100 years estimated from MPI_ECHAM5 and GFDL_CM2.1 model by A1B scenario considering the thermosteric effect were 24 cm and 28 cm for the NWP and 27 cm and 31 cm for the Seas around the KP, respectively. Statistical analysis reveals that these SL rises are caused by the weakening of the Siberian High in winter as well as variations of pressure system in the NWP and by the resultant change of water temperature. It also found that the highest SL rise in the Kuroshio extension region of the NWP was connected with the large increase of water temperature in this area.

Analysis on Field Applicability of SWAN Nested Model (SWAN Nested model의 현장 적용성 분석)

  • Kim, Kang-Min;Dae, Nam-Ki;Lee, Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.1
    • /
    • pp.45-49
    • /
    • 2011
  • The recent trend for numerical experiment requires more higher resolution and accuracy. Generally, in the wave field calculation, it starts with a large region formulation first and follows by a separated detailed region formulation by more denser grids for the main interest area considering the geographical and bathymetrical variation. The wave fields resulted from the large region calculation is being introduced into the detail region calculation as the incident waves. In this process there exists a problem of continuity. In order to get over such problem, method of variable gridding system or spectrum sampling, etc., is being used. However, it seems not enough to examine and analyze the related numerical errors. Therefore, it is investigated in this study the field applicability of the most pervasive use of wave model, the nested SWAN model. For this purpose, we made model experiment for two coastal harbours with different tidal environment, and compared and analyzed the result. From the analysis, it was found that both the extracted values, near the boundaries of the large and detail region and the nested formulation of SWAN model, show almost the same and no different between those with different tidal environment conditions. However it is necessary for reducing the numerical errors to set the boundaries for the detailed region outside of the rapid bathymetric change and deeper region.

A Study of Long-term Trends of SST in the Korean Seas by Reconstructing Historical Oceanic Data (과거 해양자료 복원을 통한 한반도 주변해역 표층수온의 장기변동 연구)

  • Park, Myung-Hee;Song, Ji-Young;Han, In-Seong;Lee, Joon-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.881-897
    • /
    • 2019
  • We reconstructed and digitized the National Institute of Fisheries Science (NIFS) Serial Oceanographic observations (NSO) and Coastal Oceanographic observations (NCO) data attained prior to 1961 through historical oceanographic observation data rescue projects. Increasing trends of long-term sea surface temperature (SST) were shown from the NSO data of 21 available stations for the past 80 to 92 years. In general agreement with previous research results used in the data of the past 50 years, we calculated the rate of temperature rise. As a result of analyzing the spatial distribution of SST change rate in the Korean of shore region using selected oceanographic data, the West Sea and South Sea showed a higher tendency of temperature rise in the offshore area than in the coastal area. However, unlike the results of previous studies, the East Sea (Gangwon Line and Ulsan Line) showed a lower water temperature rise than the coastal stations. Annual fluctuations of NCO's SST data from 1989 to 1998 for three stations representing the East Sea, South Sea, and West Sea, (Jumunjin, Geomundo and Budo, respectively) revealed that the East Sea showed the highest SST increase for the 10 years. The increases were 1.63 ℃ at Jumunjin, 1.16 ℃ at Geomundo, and 0.79 ℃ at Budo. As a result of the investigation, it can be concluded that SST is repeatedly rising and falling with a period of 3 ~ 6 years. Especially, since the 1980s, most of the stations show positive anomalies of SST. Lastly, to understand ocean_atmosphere interactions, we analyzed the correlations between SST of the NCO stations and air temperature around them and the results were 0.76 for the South Sea (Geomundo), 0.34 for the West Sea (Budo), and 0.32 for the East Sea (Jumunjin) with the highest correlation in the South Sea.

Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea (서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석)

  • Beom, Jina;Jeung, Minhyuk;Park, Hyun-Jin;Choi, Woo-Jung;Kim, YeongJoo;Yoon, Kwang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

Marine Algal Flora and Community Structure of Igidea Area in Busan, Korea (부산 이기대 지역의 해조상 및 군집구조)

  • Shin, Bong-Kyun;Kwon, Chun-Jung;Lee, Suk-Mo;Choi, Chang-Geun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.2
    • /
    • pp.121-129
    • /
    • 2014
  • Marine algal flora and community structure were seasonally investigated at four sites in the vicinity of the Igidae on the southern east coast of Korea from May 2010 to February 2011. A total of 66 species including 9 of Chlorophyta, 14 of Phaeophyta, 43 of Rhodophyta were found during the survey period. Among these species, 16 species were found throughout the year. Seasonal mean biomass in wet weight was 123.6 (spring), 2,061.6 (summer), 412.0 (autumn), 678.9 (winter) $g{\cdot}m^{-2}$. Maximum biomass was recorded in summer($2,061.6g{\cdot}m^{-2}$), and minimum was recorded in spring($123.6g{\cdot}m^{-2}$). Spatial maximum and minimum species number were recorded at station 3 and 4(50 species) and at station 1(47 species). At station 1, 2 directly exposure on Yongho and Daeyeon cheon (stream) run off, and discharge from Nambu sewage treatment plants near coastal area, species diversity was relatively low and dominant species were similar throughout four seasons. The R/P, C/P and (R+C)/P value reflecting flora characteristics were 3.07, 0.64 and 3.71, respectively. The flora investigated could be classified into six functional groups such as coarsely branch form 39.39 %, sheet form 30.30 %, thick leather form 13.64 %, filamentous form 12.12 %, crustose form 3.03% and jointed calcareous form 1.52 % during survey period. The number of marine algae species in Igidea were 96 species at 1996 to 1997 and 66 species at 2010 to 2011, respectively. The change of seaweed species is due to the pollution loaded from sewage treatment plant and stream. We thus recommend that the positive maintenance control method like sewage treatment, for the protection of seaweed bed should be proceeded to near coastal area.

Genetic variation and structure of Juniperus chinensis L. (Cupressaceae) in Korea

  • Kim, Eun-Hye;Shin, Jae-Kwon;Jeong, Keum-Seon;Lee, Chang-Seok;Chung, Jae-Min
    • Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.111-119
    • /
    • 2018
  • Background: Juniperus chinensis L. populations are distributed locally on several areas including coastal cliffs which are difficult to access in the central eastern Korea. Wild populations inhabit relatively barren environments such as rocky areas and cliffs, which are very sensitive to even minor environmental disturbances including artificial interventions and natural disturbances, and thus demonstrate great fluctuations in the population size and density. This study aims to analyze the genetic diversity, differentiation, and genetic structure of each population in order to provide useful data required to establish a substantial conservation strategy of J. chinensis. Results: The genetic diversity of J. chinensis at the population level (P = 78.7%, h = 0.282, S.I. = 0.420) was somewhat higher compared with those measured in the same genus, Juniperus. The genetic differentiation degree among nine populations established naturally in central eastern Korea was 11.50% and that among sub-populations within the same area was 5.52%. On the other hand, genetic variation of individuals within the populations was 82.93%. But frequency of the main allele was different among loci. In particular, fixation of allele frequency and occurrence of rare allele in the highly isolated population suggest a likelihood that genetic drift would occur in populations of this plant. As the result of analysis on the genetic structure of nine populations, nearby populations and isolated populations tended to form separate clusters from each other as the hypothetical number of clusters (K) increase. Conclusions: This result implies that if the population size of J. chinensis is reduced due to environmental change and artificial and/or natural disturbances in the future, it could affect negatively on the genetic diversity of the plant species. In order to maintain and conserve genetic diversity of J. chinensis, ecological network, which can help genetic exchange among the local populations, should be prepared, and conservation strategies in situ as well as ex situ are also required with continuous monitoring.

Monitoring the Coastal Waters of the Yellow Sea Using Ferry Box and SeaWiFS Data (정기여객선 현장관측 시스템과 SeaWiFS 자료를 이용한 서해 연안 해수환경 모니터링)

  • Ryu, Joo-Hyung;Moon, Jeong-Eon;Min, Jee-Eun;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.4
    • /
    • pp.323-334
    • /
    • 2007
  • We analyzed the ocean environmental data from water sample and automatic measurement instruments with the Incheon-Jeju passenger ship for 18 times during 4 years from 2001 to 2004. The objectives of this study are to monitor the spatial and temporal variations of ocean environmental parameters in coastal waters of the Yellow Sea using water sample analysis, and to compare and analyze the reliability of automatic measurement sensors for chlorophyll and turbidity using in situ measurements. The chlorophyll concentration showed the ranges between 0.1 to $6.0mg/m^3$. High concentrations occurred in the Gyeonggi Bay through all the cruises. The maximum value of chlorophyll concentration was $16.5mg/m^3$ in this area during September 2004. The absorption coefficients of dissolve organic matter at 400 nm showed below $0.5m^{-1}$ except those in August 2001 During 2002-2003, it did not distinctly change the seasonal variations with the ranges 0.1 to $0.4m^{-1}$. In the case of suspended sediment (SS) concentration, most of the area showed below $20g/m^3$ through all seasons except the Gyeonggi Bay and around Mokpo area. In general SS concentration of autumn and winter season was higher than that of summer. The central area of the Yellow Sea appeared to have lower value $10g/m^3$. The YSI fluorometer for chlorophyll concentration had a very low reliability and turbidity sensor had a $R^2$ value of 0.77 through the 4 times measurements comparing with water sampling method. For the automatic measurement using instruments for chlorphlyll and suspended sediment concentration, McVan and Choses sensor was greater than YSI multisensor. The SeaWiFS SS distribution map was well spatially matched with in situ measurement, however, there was a little difference in quantitative concentration.

Kriging Analysis for Spatio-temporal Variations of Ground Level Ozone Concentration

  • Gorai, Amit Kumar;Jain, Kumar Gourav;Shaw, Neha;Tuluri, Francis;Tchounwou, Paul B.
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.4
    • /
    • pp.247-258
    • /
    • 2015
  • Exposure of high concentration of ground-level ozone (GLO) can trigger a variety of health problems including chest pain, coughing, throat irritation, asthma, bronchitis and congestion. There are substantial human and animal toxicological data that support health effects associated with exposure to ozone and associations have been observed with a wide range of outcomes in epidemiological studies. The aim of the present study is to estimate the spatial distributions of GLO using geostatistical method (ordinary kriging) for assessing the exposure level of ozone in the eastern part of Texas, U.S.A. GLO data were obtained from 63 U.S. EPA's monitoring stations distributed in the region of study during the period January, 2012 to December, 2012. The descriptive statistics indicate that the spatial monthly mean of daily maximum 8 hour ozone concentrations ranged from 30.33 ppb (in January) to 48.05 (in June). The monthly mean of daily maximum 8 hour ozone concentrations was relatively low during the winter months (December, January, and February) and the higher values observed during the summer months (April, May, and June). The higher level of spatial variations observed in the months of July (Standard Deviation: 10.33) and August (Standard Deviation: 10.02). This indicates the existence of regional variations in climatic conditions in the study area. The range of the semivariogram models varied from 0.372 (in November) to 15.59 (in April). The value of the range represents the spatial patterns of ozone concentrations. Kriging maps revealed that the spatial patterns of ozone concentration were not uniform in each month. This may be due to uneven fluctuation in the local climatic conditions from one region to another. Thus, the formation and dispersion processes of ozone also change unevenly from one region to another. The ozone maps clearly indicate that the concentration values found maximum in the north-east region of the study area in most of the months. Part of the coastal area also showed maximum concentrations during the months of October, November, December, and January.