Browse > Article
http://dx.doi.org/10.1186/s41610-018-0073-4

Genetic variation and structure of Juniperus chinensis L. (Cupressaceae) in Korea  

Kim, Eun-Hye (Department of Biology, Seoul Women's University)
Shin, Jae-Kwon (Division of Forest Resource Conservation, Korea National Arboretum)
Jeong, Keum-Seon (Baekdudaegan National Arboretum)
Lee, Chang-Seok (Department of Biology, Seoul Women's University)
Chung, Jae-Min (Division of Forest Resource Conservation, Korea National Arboretum)
Publication Information
Journal of Ecology and Environment / v.42, no.3, 2018 , pp. 111-119 More about this Journal
Abstract
Background: Juniperus chinensis L. populations are distributed locally on several areas including coastal cliffs which are difficult to access in the central eastern Korea. Wild populations inhabit relatively barren environments such as rocky areas and cliffs, which are very sensitive to even minor environmental disturbances including artificial interventions and natural disturbances, and thus demonstrate great fluctuations in the population size and density. This study aims to analyze the genetic diversity, differentiation, and genetic structure of each population in order to provide useful data required to establish a substantial conservation strategy of J. chinensis. Results: The genetic diversity of J. chinensis at the population level (P = 78.7%, h = 0.282, S.I. = 0.420) was somewhat higher compared with those measured in the same genus, Juniperus. The genetic differentiation degree among nine populations established naturally in central eastern Korea was 11.50% and that among sub-populations within the same area was 5.52%. On the other hand, genetic variation of individuals within the populations was 82.93%. But frequency of the main allele was different among loci. In particular, fixation of allele frequency and occurrence of rare allele in the highly isolated population suggest a likelihood that genetic drift would occur in populations of this plant. As the result of analysis on the genetic structure of nine populations, nearby populations and isolated populations tended to form separate clusters from each other as the hypothetical number of clusters (K) increase. Conclusions: This result implies that if the population size of J. chinensis is reduced due to environmental change and artificial and/or natural disturbances in the future, it could affect negatively on the genetic diversity of the plant species. In order to maintain and conserve genetic diversity of J. chinensis, ecological network, which can help genetic exchange among the local populations, should be prepared, and conservation strategies in situ as well as ex situ are also required with continuous monitoring.
Keywords
Juniperus chinensis; Inter-simple-sequence repeat (ISSR); Genetic diversity; Structure; Conservation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hutchison, D. W., & Templeton, A. R. (1999). Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution, 53(6), 1898-1914.   DOI
2 IUCN. The IUCN red list of threatened species, Conifer Specialist Group Ver. 2.3. 1998.
3 Jeong, J. H., Kim, E. H., Guo, W., Yoo, K. O., Jo, D. G., & Kim, Z. S. (2010). Genetic diversity and structure of the endangered species Megaleranthis saniculifolia in Korea as revealed by allozyme and ISSR markers. Plant systematics and evolution., 289(1-2), 67-76.   DOI
4 Jo, H. J. (2012). Antitumor efficacy evaluation for cedrol dosage form studies. Department of life science and biotechology, Graduate school, Dong-Eui University. Master's thesis in Korea.
5 Kwon, H. Y., & Kim, Z. S. (2002). I-SSR variation within and among Korean populations in Taxus cuspidata. Journal Korean forestry society., 91(5), 654-660.
6 Lee, J. H. (2005). Ecological approach for the effective conservation and management of forest vegetation in Ulleung island, Korea. Graduate school, Kyungpook National University. Doctoral thesis in Korea.
7 Lee, J. W., Hong, K. N., & Kang, J. T. (2014). Genetic diversity and genetic structure of Phellodendron amurense populations in South Korea. Journal of Korean Forest Society., 103(1), 51-58.   DOI
8 Legendre, P., & Legendre, L. (1998). Numerical ecology: second English edition. Developments in environmental modelling, 20.
9 Lewis, D. (1942). The evolution of sex in flowering plants. Biological Reviews, 17(1), 46-67.   DOI
10 Lienert, J., & Fischer, M. (2003). Habitat fragmentation affects the common wetland specialist Primula farinosa in north-east Switzerland. Journal of Ecology, 91(4), 587-599.   DOI
11 Llorens, T. M., Ayre, D. J., & Whelan, R. J. (2004). Evidence for ancient genetic subdivision among recently fragmented populations of the endangered shrub Grevillea caleyi (Proteaceae). Heredity, 92(6), 519-526.   DOI
12 Mandel, R., & Alberts, D. (2005). Propagation protocol for Oneseed and Utah junipers (Juniperus monosperma and Juniperus osteosperma). Native Plants Journal., 6(3), 263-266.   DOI
13 Manel, S., Schwartz, M. K., Luikart, G., & Taberlet, P. (2003). Landscape genetics: combining landscape ecology and population genetics. Trends in ecology & evolution., 18(4), 189-197.   DOI
14 McCauley, D. E., Olson, M. S., Emery, S. N., & Taylor, D. R. (2000). Population structure influences sex ratio evolution in a gynodioecious plant. The American Naturalist., 155(6), 814-819.   DOI
15 McDermott, J. M., & McDonald, B. A. (1993). Gene flow in plant pathosystems. Annual Review of Phytopathology, 31(1), 353-373.   DOI
16 Meloni, M., Perini, D., Filigheddu, R., & Binelli, G. (2006). Genetic variation in five Mediterranean populations of Juniperus phoenicea as revealed by inter-simple sequence repeat (ISSR) markers. Annals of Botany., 97(2), 299-304.   DOI
17 Murphy, W. D. (1990). Assessment and modification of cognitive distortions in sex offenders. In Handbook of sexual assault. Boston: Springer, 331-342.
18 Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular ecology., 13(5), 1143-1155.   DOI
19 Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences., 70(12), 3321-3323.   DOI
20 Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583-590.
21 Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Urbana: University of Illinois Press.
22 Olivieri, I., Michalakis, Y., & Gouyon, P. H. (1995). Metapopulation genetics and the evolution of dispersal. The American Naturalist., 146(2), 202-228.   DOI
23 Rockman, M. V. (2012). The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution, 66(1), 1-17.   DOI
24 Ronce, O., Perret, F., & Olivieri, I. (2000). Evolutionarily stable dispersal rates do not always increase with local extinction rates. The American Naturalist., 155(4), 485-496.   DOI
25 Shin, J. K., Chung, J. M., Kim, J. S., Yoon, C. W., & Shin, C. H. (2015). The distribution and dynamics between sexes, conservation of natural populations of a rare woody plant, Juniperus chinensis L. Korean Journal of Plant Resources., 28(4), 400-410.   DOI
26 Vucetich, J. A., & Waite, T. A. (2003). Spatial patterns of demography and genetic processes across the species' range: null hypotheses for landscape conservation genetics. Conservation genetics., 4(5), 639-645.   DOI
27 Terrab, A., Schonswetter, P., Talavera, S., Vela, E., & Stuessy, T. F. (2008). Rangewide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Molecular Phylogenetics and Evolution., 48(1), 94-102.   DOI
28 Thomson, J. D., & Barrett, S. C. (1981). Temporal variation of gender in Aralia hispida Vent.(Araliaceae). Evolution, 35(6), 1094-1107.   DOI
29 Ulleung County The Office Ulleung County history book. 2007.
30 Wang, J., Ye, Q., Kang, M., & Huang, H. (2008). Novel polymorphic microsatellite loci and patterns of pollen-mediated gene flow in an ex situ population of Eurycorymbus cavaleriei (Sapindaceae) as revealed by categorical paternity analysis. Conservation Genetics., 9(3), 559-567.   DOI
31 Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16(2), 97-159.
32 Yeh, F. C., Yang, R. C., & Boyle, T. (1999). POPGENE version1. 32, Microsoft window-base software for population genetic analysis: a quick user's guide. University of Alberta. Center for International Forestry Research, Alberta.
33 Young, A., Boyle, T., & Brown, T. (1996). The population genetic consequences of habitat fragmentation for plants. Trends in Ecology & Evolution., 11(10), 413-418.   DOI
34 Couvet, D., Ronce, O., & Gliddon, C. (1998). The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. The American Naturalist., 152(1), 59-70.   DOI
35 Jacquemyn, H., Honnay, O., Galbusera, P., & Roldan-Ruiz, I. (2004). Genetic structure of the forest herb Primula elatior in a changing landscape. Molecular Ecology., 13(1), 211-219.   DOI
36 Adams, R. P. (2014). Junipers of the world: the genus Juniperus. Bloomington: Trafford Publishing.
37 Bell, G., & Gonzalez, A. (2009). Evolutionary rescue can prevent extinction following environmental change. Ecology Letters, 12(9), 942-948.   DOI
38 Bohonak, A. J. (2002). IBD (isolation by distance): a program for analyses of isolation by distance. Journal of Heredity, 93(2), 153-154.   DOI
39 Cho K, Jeong J, Kim W, Kim Y, Hong Y. Genetic variation of populations of Fraxinus mandshurica Rupr. In Korea (Oleaceae) based on I - SSR Marker Analysis. Proceedings of Korean Forest Society. 2002. 114-115.
40 Choi, H. S., Hong, K. N., Chung, J. M., & Kim, W. W. (2004). Spatial genetic structure and genetic diversity of a rare endemic Juniperus chinensis var. sargentii in Mt. Halla, Korea. The Korean Journal of Ecology., 27(5), 257-261.   DOI
41 Dzialuk, A., Mazur, M., Boratynska, K., Montserrat, J. M., Romo, A., & Boratynski, A. (2011). Population genetic structure of Juniperus phoenicea (Cupressaceae) in the western Mediterranean Basin: gradient of diversity on a broad geographical scale. Annals of Forest Science., 68(8), 1341-1350.   DOI
42 Eckert, C. G., Samis, K. E., & Lougheed, S. C. (2008). Genetic variation across species' geographical ranges: the central-marginal hypothesis and beyond. Molecular ecology., 17(5), 1170-1188.   DOI
43 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular ecology., 14(8), 2611-2620.   DOI
44 Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics. 1, 117693430500100003.
45 Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164(4), 1567-1587.
46 Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular ecology notes., 7(4), 574-578.   DOI
47 Gonzalez A, Mouquet N, & Loreau M. (2009). Biodiversity as spatial insurance: the effects of habitat fragmentation and dispersal on ecosystem functioning. In: Naeem S, Bunker DE, Hector A, Loreau M, Perrings C, Eds. Biodiversity, ecosystem functioning, and human wellbeing. New York: Oxford University Press, 134-46.
48 Fan, X. X., Shen, L., Zhang, X., Chen, X. Y., & Fu, C. X. (2004). Assessing genetic diversity of Ginkgo biloba L. (Ginkgoaceae) populations from China by RAPD markers. Biochemical genetics, 42(7-8), 269-278.   DOI
49 Farjon, A. (2008). The natural history of conifers Portland: Timber Press.
50 Frankham, R. (2015). Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Molecular Ecology., 24(11), 2610-2618.   DOI
51 Hamrick, J. L., & Godt, M. J. W. (1990). Allozyme diversity in plant species. Plant population genetics, breeding, and genetic. Resources, 43-63.
52 Hamrick, J. L., & Godt, M. J. W. (1996). Effects of life history traits on genetic diversity in plant species. Philosophical Transactions of the Royal Society B: Biological Sciences., 351(1345), 1291-1298.   DOI
53 Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (vol. 116). Sunderland: Sinauer associates.
54 Hou, Y., & Lou, A. (2011). Population genetic diversity and structure of a naturally isolated plant species, Rhodiola dumulosa (Crassulaceae). PLoS One, 6(9), e24497.   DOI
55 Hughes, A. R., Inouye, B. D., Johnson, M. T., Underwood, N., & Vellend, M. (2008). Ecological consequences of genetic diversity. Ecology Letters, 11(6), 609-623.   DOI