• 제목/요약/키워드: ceria

검색결과 232건 처리시간 0.023초

슬러리 공급 시스템을 이용한 화학적 기계적 연마 공정에서의 POU 필터의 성능 평가 (Evaluation of Point-Of-Use (POU) Filters Performance in Chemical Mechanical Polishing Slurry Supply System)

  • 장선재;김호중;진홍이;남미연;아툴 쿨르카르니;김태성
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.261-269
    • /
    • 2013
  • The chemical mechanical polishing (CMP) process is widely used in semiconductor manufacturing process for planarization of various materials and structures. Point-of-use (POU) filters are used in most of the CMP processes in order to reduce the unwanted micro-scratches which may result in defects. The performance of the POU filter is depends on type and size of the abrasives used during cleaning process. For this reason, there is a need to evaluate POU filters for their filtration efficiency (FE) with different types of abrasives. In this study, we developed filter test system to evaluate the FE of POU using ceria and silica abrasives (slurry). The POU filter is roll type capsule filter with retention size of 0.2 ${\mu}m$. Two POU filters of different make are evaluated for FE. We observed that both POU filters show similar filtration efficiency for silica and ceria slurry. Results reveal that the ceria slurry and the colloidal silica particle are removed not only by mechanical way but also hydrodynamic and electrostatic interaction way.

세리아가 첨가된 니켈/칼슘 하이드록시 아파타이트 촉매 상의 부탄 부분산화 연구 (Partial oxidation of n-butane over ceria-promoted nickel/calcium hydroxyapatite)

  • 곽정훈;이상엽;김미소;남석우;임태훈;홍성안;윤기준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2007
  • Partail oxidation(POX) of n-butane was investigated in this research by employing ceria-promoted Ni/calcium hydroxyapatite catalysts ($Ce_xNi_{2.5}Ca_{10}(OH)_2(PO_4)_6$ ; x = $0.1{\sim}0.3$) which had recently been reported to exhibit good catalytic performance in POX of methane and propane. The experiments were carried out with changing ceria content, $O_2/n-C_4H_{10}$ ratio and temperature. As the $O_2/n-C_4H_{10}$ feed ratio increased up to 2.75, n-$C_4H_{10}$ conversion and $H_2$ yield increased and the selectivity of methane and other hydrocarbons decreased. But with $O_2/n-C_4H_{10}$ = 3.0, $n-C_4H_{10}$ conversion and $H_2$ yield decreased. This is considered due to that too much oxygen may inhibit the reduction of Ni or induce the oxidation of Ni, which results in poor catalytic activity. The optimum $O_2/n-C_4H_{10}$ ratio lay between 2.50 and 2.75. $Ce_{0.1}Ni_{2.5}Ca_{10}(OH)_2(PO_4)_6$ showed the highest $n-C_4H_{10}$ conversion and $H-2$ yield on the whole. In durability tests, higher hydrogen yield and better catalyst stability were obtained with the $O_2/n-C_4H_{10}$ ratio of 2.75 than with the ratio of 2.5.

  • PDF

PEMWE를 위한 Cs치환에 따른 공유가교 SPEEK/Cs(x)-TPA/Ceria막의 합성 및 특성 연구 (The Synthesis and Characteristics of Covalently Cross-Linked SPEEK/Cs-substituted TPA/CeO2 Composite Membranes for PEMWE)

  • 황성하;박대영;오승희;윤대진;오연선;서현;강안수;문상봉;정장훈
    • 한국수소및신에너지학회논문집
    • /
    • 제25권2호
    • /
    • pp.151-160
    • /
    • 2014
  • CL-SPEEK/Cs-TPA/$CeO_2$ composite membrane was prepared for polymer electrolyte membrane water electrolysis (PEMWE). In order to improve the electrochemical, mechanical, durabilities and electrocatalytic characteristics, engineering plastic of polyether ether ketone (PEEK) as polymer matrix was sulfonated and the organic-inorganic blend composite membranes was prepared by loading cesium-substituted tungstophosphoric acid (Cs-TPA) by titration method with cross-linking agent contents of 0.01mL. Ceria ($CeO_2$) was used to scavenge free radicals which attack the membrane in the PEMWE circumstance and to increase the duration of the membrane. CL-SPEEK/$Cs_{(1)}$-TPA/CeriaIn conclusion, 1% membrane showed the optimum results such as 0.119 S/cm at $80^{\circ}C$ of proton conductivity and 62MPa of tensile strength.

구연산법에 의한 Yttria Doped Ceria (YDC) 분말 합성 및 정전분무법에 의한 YDC 박막 제조 (Synthesis of Yttria Doped Ceria Powders by a Citrate Method and Their Thin Film Preparation by Electrospray Method)

  • 권혁택;백승민;김진수
    • 공업화학
    • /
    • 제21권1호
    • /
    • pp.76-80
    • /
    • 2010
  • 본 연구에서는 균일한 조성과 입자 크기를 가지는 YDC 분말을 구연산법을 이용하여 합성하고, 이를 정전분무법을 이용하여 박막으로 제조하였다. 금속염에 구연산과 에틸렌글리콜을 첨가하여 합성한 고분자 전구체는 $750^{\circ}C$에서 3 h 동안 열처리하여 형석구조의 단일 결정상 YDC 분말로 제조되었다. 최적의 정전분무 조건에서 코팅된 박막은 $1400^{\circ}C$에서 3 h 동안 열처리된 후 기공이 없는 치밀한 구조를 나타냈으며, 코팅 두께는 분무 시간에 비례하여 증가하였다.

Sintering and Grain Growth of Rare Earth-Doped Ceria Particles

  • Sameshima, Soichiro;Higashi, Kenji;Hirata, Yoshihiro
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.65-86
    • /
    • 2000
  • Rare earth-doped ceria powders with a composition of Ce0.8R0.2O1.9(R=Yb, Y, Gd, Sm, Nd and La) were prepared by heating the oxalate coprecipitate. The green compacts began to shrink at 600$^{\circ}$-700$^{\circ}C$. The relative density after the sintering at 1200$^{\circ}$ and 1400$^{\circ}C$ became higher for the higher green density. The samples were densified above 98% relative density by the sintering ant 1600$^{\circ}C$ for 4 h and the grain sizes (4.7-7.6$\mu\textrm{m}$) showed a tendency to become larger with increasing ionic radius of doped-rare earth element. In the intial stag of sintering at 700$^{\circ}$-800$^{\circ}C$, the dominant mass transport process changed from lattice diffusion to grain boundary diffusion to grain boundary diffusion with heating time. The porosity during the intermediated and final stage of the sintering at 1200$^{\circ}$ and 1400$^{\circ}C$ decreased by the mass transport through lattice diffusion with grain growth.

  • PDF

기계.화학적인 연마에서 슬러리의 특성에 따른 나노토포그래피의 영향과 numerical시뮬레이션 (Effect of Slurry Characteristics on Nanotopography Impact in Chemical Mechanical Polishing and Its Numerical Simulation)

  • Takeo Katoh;Kim, Min-Seok;Ungyu Paik;Park, Jea-Gun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.63-63
    • /
    • 2003
  • The nanotopography of silicon wafers has emerged as an important factor in the STI process since it affects the post-CMP thickness deviation (OTD) of dielectric films. Ceria slurry with surfactant is widely applied to STI-CMP as it offers high oxide-to-nitride removal selectivity. Aiming to control the nanotopography impact through ceria slurry characteristics, we examhed the effect of surfactant concentration and abrasive size on the nanotopography impact. The ceria slurries for this study were produced with cerium carbonate as the starting material. Four kinds of slurry with different size of abrasives were prepared through a mechanical treatment The averaged abrasive size for each slurry varied from 70 nm to 290 nm. An anionic organic surfactant was added with the concentration from 0 to 0.8 wt %. We prepared commercial 8 inch silicon wafers. Oxide Shu were deposited using the plasma-enhanced tetra-ethyl-ortho-silicate (PETEOS) method, The films on wafers were polished on a Strasbaugh 6EC. Film thickness before and after CMP was measured with a spectroscopic ellipsometer, ES4G (SOPRA). The nanotopogrphy height of the wafer was measured with an optical interferometer, NanoMapper (ADE Phase Shift)

  • PDF

산화막 CMP 공정에서 슬러리 온도 변화에 따른 연마 특성 (Polishing Properties by Change of Slurry Temperature in Oxide CMP)

  • 고필주;박성우;김남훈;서용진;이우선
    • 한국전기전자재료학회논문지
    • /
    • 제18권3호
    • /
    • pp.219-225
    • /
    • 2005
  • To investigate the effects of slurry temperature on the chemical mechanical polishing(CMP) performance of oxide film with silica and ceria slurries, we have studied slurry properties as a function of different slurry temperature. Also, the effects of each input parameter of slurry on the oxide CMP characteristics were investigated. The pH showed a slight tendency of decrease, the conductivity in slurries showed an increased tendency, the mean particle size in slurry decreased, and the zeta potential of slurry decreased with temperature. The removal rates significantly increased and maintained at the specific levels over 4$0^{\circ}C$. The better surface morphology of oxide films could be obtained at 40 $^{\circ}C$ of silica slurry and at 90 $^{\circ}C$ of ceria slurry. It is found that the CMP performance of oxide film could be significantly improved or controlled by change of slurry temperature.

Oxygen-Response Ability of Hydrogen-Reduced Nanocrystalline Cerium Oxide

  • Lee, Dong-Won
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.250-255
    • /
    • 2011
  • The potential application of ultrafine cerium oxide (ceria, $CeO_2$) as an oxygen gas sensor has been investigated. Ceria was synthesized by a thermochemical process: first, a precursor powder was prepared by spray drying cerium-nitrate solution. Heat treatment in air was then performed to evaporate the volatile components in the precursor, thereby forming nanostructured $CeO_2$ having a size of approximately 20 nm and specific surface area of 100 $m^2/g$. After sintering with loosely compacted samples, hydrogen-reduction heat treatment was performed at 773K to increase the degree of non-stoichiometry, x, in $CeO_{2-x}$. In this manner, the electrical conductivity and oxygen-response ability could be enhanced by increasing the number of oxygen vacancies. After the hydrogen reduction at 773K, $CeO_{1.5}$ was obtained with nearly the same initial crystalline size and surface. The response time $t_{90}$ measured at room temperature was extremely short at 4 s as compared to 14 s for normally sintered $CeO_2$. We believe that this hydrogen-reduced ceria can perform capably as a high-performance oxygen sensor with good response abilities even at room temperature.

Ceria의 소결과 전기전도도에 미치는 첨가제의 영향 (Effect of Additives on the Densification and Electrical Properties of Ce0.8Gd0.2O2-δ Ceramics)

  • 유경빈;오은주;최경만
    • 한국세라믹학회지
    • /
    • 제42권12호
    • /
    • pp.816-820
    • /
    • 2005
  • The doped-ceria is a strong candidate material for an intermediate temperature SOFC. However, the mechanical strength and the magnitude of electrical conductivity need to be increased at low sintering temperature. In this study, to improve both properties, $1at\% $ of Mg, Ca, Cr, Fe, Co, Ni, Cu, Ga, and Zr were added to the GDC20 ($20at\%$ Gd-doped Ceria) and sintered at $1350^{\circ}C$ that is $250^{\circ}C$ lower than $1600^{\circ}C$. With addition, the relative density of the sintered sample increased. Fe, Co, Ni, Cu, Ga doped-GDC20 showed high relative density over $92\%$. Among them, Ga doped-GDC20 showed the most improved sinterability. The conductivity of doped­GDC20 increased by $\~10$ times at $300\~700^{\circ}C$.