• Title/Summary/Keyword: cerebral ischemia/reperfusion

Search Result 125, Processing Time 0.031 seconds

Effects of Astragali Radix and Polygalae Radix on Cerebral Ischemic and Reperfused Injury (황기와 원지분획의 뇌허혈에 관한 약효연구)

  • Han, Suk-Hee;Park, Jin-Hyuk;Kim, Jin-Sook;Lee, Sun-Mee
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.371-377
    • /
    • 2000
  • In order to investigate the pharmacological properties of fractions of Astragali Radix and Polygalae Radix, the effects of the fractions on cerebral ischemia and subsequent reperfusion were studied. Brain ischemia was induced by bilateral common carotid artery occlusion in mongolian gerbil. Brains were recirculated for 30 mins after the 20 min occlusion. Methanol and butanol fractions of Astragali Radix and Polygalae Radix were administered orally 2 hrs before common carotid artery occlusion. Histological observations showed that brain ischemia induced severe brain damage evidenced by the presence of necrotic foci, edema and hemorrhage. This injury was prevented by the methanol fraction and butanol fraction of Polygalae Radix. The level of ATP in brain tissue significantly decreased in ischemic gerbils. This decrease was prevented by the pretreatment with butanol fraction of Polygalae Radix. In contrast, the levels of lactate and lipid peroxide were both elevated in ischemic gerbils. This elevation was inhibited by the pretreatments with methanol fraction and butanol fraction of Polygalae Radix. Our findings suggest that the Polygalae Radix improves ischemia-induced brain damage.

  • PDF

Neuroprotective effects of consuming bovine colostrum after focal brain ischemia/reperfusion injury in rat model

  • Choi, Han-Sung;Ko, Young-Gwan;Lee, Jong-Seok;Kwon, Oh-Young;Kim, Sun-Kyu;Cheong, Chul;Jang, Ki-Hyo;Kang, Soon-Ah
    • Nutrition Research and Practice
    • /
    • v.4 no.3
    • /
    • pp.196-202
    • /
    • 2010
  • To investigate the neuroprotective effects of bovine colostrums (BC), we evaluate the ability of consuming BC after focal brain ischemia/reperfusion injury rat model to reduce serum cytokine levels and infarct volume, and improve neurological outcome. Sprague-Dawley rats were randomly divided into 4 groups; one sham operation and three experimental groups. In the experimental groups, MCA occlusion (2 h) and subsequent reperfusion (O/R) were induced with regional cerebral blood flow monitoring. One hour after MCAO/R and once daily during the experiment, the experimental group received BC while the other groups received 0.9% saline or low fat milk (LFM) orally. Seven days later, serum pro-inflammatory cytokine (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) and anti-inflammatory cytokine (IL-10) levels were assessed. Also, the infarct volume was assessed by using a computerized image analysis system. Behavioral function was also assessed using a modified neurologic severity score and corner turn test during the experiment. Rats receiving BC after focal brain I/R showed a significant reduction (-26%/-22%) in infarct volume compared to LFM/saline rats, respectively (P < 0.05). Serum IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ levels were decreased significantly in rats receiving BC compared to LFM/saline rats (P < 0.05). In behavioral tests, daily BC intake showed consistent and significant improvement of neurological deficits for 7 days after MCAO/R. BC ingestion after focal brain ischemia/reperfusion injury may prevent brain injury by reducing serum pro-inflammatory cytokine levels and brain infarct volume in a rat model.

Effect of PAF Antagonists on the Nitric Oxide Synthesis in Ischemic Cerebral Cortex (PAF 길항제가 허혈성 대뇌 피질내 Nitric Oxide 합성에 미치는 영향)

  • No, Soon-Kee;Park, Kyu-Hyun;Lee, Won-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.665-672
    • /
    • 1997
  • This study aimed to investigate the mechanism of cerebroprotection of platelet-activating factor(PAF) antagonists in transient cerebral ischemia of rat. Right middle cerebral artery(MCA) of Sprague-Dawley rat was occluded for 2 hours using an intraluminal filament technique. After 22 hours of reperfusion, morphometrically detectable infarct was developed in the cortex and striatum identical to the territory of MCA. The infarct size was significantly reduced by PAF antagonists, BN 52021 and CV-6209, as well as an inducible nitric oxide synthase(iNOS) inhibitor aminoguanidine(1 mg/kg, i.p., respectively) administered 5 min after MCA occlusion. PAF antagonists significantly inhibited the enzymatic activities of both myeloperoxidase and iNOS in the cerebral hemisphere ipsilateral to ischemia, whereas aminoguanidine did not inhibit myeloperoxidase activity but significantly inhibited the iNOS activity. These results suggest that PAF antagonists exert a cerebroprotective effect against ischemic brain damage through inhibition of leukocyte infiltration and iNOS activity in the postischemic brain.

  • PDF

The Neuroprotective Activities of the Sam-Hwang-Sa-Shim-Tang in the Transient Ischemic Model in Rats.

  • Kim, Min-Sun;Hwang, Young-Sun;Ryu, Jong-Hoon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.85-85
    • /
    • 2001
  • Sam-Hwang-Sa-Shim-Tang(SHSST), a traditional Chinese medicine, composed of Rhei rhizoma, Scutellaria radix, and Coptidis rhizoma were used in the several disease including hypertension, constipation, and hemorrhage. In the present study, we investigated the neuroprotective effects of SHSST and its ingredients on the ischemia/ reperfusion-induced brain injury was evaluated in the rat brain. Ischemia was induced by intraluminal occlusion of the right middle cerebral artery for 120 min and reperfusion was continued for 22 h. SHSST (450 mg/kg), Rhei rhii oma (100 mg/kg), Coptidis rhizoma (100 mg/kg), and Scutellaria radik (100 mg/kg) were orally administered twice, promptly prior to reperfusion and 2 h after the repefusion. Total infarction volume in the ipsilateral hemisphere of ischemia/ reperfusion rats was significantly lowed by the treatments of SHSST (39.2%) and Scutellaria radix (66.5%). However, Coptidis rhizoma did not show any significant effects on the total infarct volume. The inhibiting effect of Scutellaria radix on the total infarct volume was more potent than that of SHSST. In addition, Scutellaria radix significantly inhibited myeloperoxidase (MPO) activity, an index of neutrophil infiltration in ischemic brain tissue. However, there was marked mismatch between total infarct volume and MPO activity in the Scutellaria radix-treated rats. Our findings suggest that Scutellaria radix as an ingredient of SHSST plays a protective role in ischemia-induced brain injury by inhibiting neutrophil infiltration. The effects of Rhei rhizoma on transient brain ischemia-induced neuronal injury are under study.

  • PDF

Neuroprotective Effect of Polygae Radix on the Brain Ischemia Induced by Four- Vessel Occlusion in Rats

  • Kim, Young-Ock;Lee, Hyun-Sun;Lee, Young-Ah;Shin, Joon-Shik;An, Deuk-Kyun;Kim, Ho-Chol
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.148.1-148.1
    • /
    • 2003
  • The effects of methanolic extracts of Polygalae Radix (PR 100mg/kg) was tested to evaluate on the neuroprotective activity (92% p<0.001) on global cerebral schemia. Based on bioassays guided fractionation, butanol soluble fraction (BtOH 25mg/kg) had the neuroprotive effect (87% p<0.001) of global cerebral ischemia in rat. Oxygen free radical injury plays an important role in neuronal damage induced by brain ischemia and reperfusion. (omitted)

  • PDF

Attenuated Cerebral Ischemic Injury by Polyethylene Glycol-Conjugated Hemoglobin

  • Cho, Geum-Sil;Choi, In-Young;Choi, Yoo-Keum;Kim, Seul-Ki;Cai, Ying;Nho, Kwang;Lee, Jae-Chul
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.270-275
    • /
    • 2009
  • Polyethylene glycol-conjugated hemoglobin (PEG-Hb) has been proposed as a blood substitute for transfusion due to their plasma expansion and oxygen transport capabilities. The protective effect of PEG-Hb on cerebral hypoxic-ischemic injury was investigated in neonatal hypoxia model and adult rat focal cerebral ischemia model. As intravenously administered 30 min before the onset of hypoxia, PEG-Hb markedly protected cerebral hypoxic injury in a neonatal rat hypoxia model. A similar treatment of PEG-Hb largely reduced the ischemic injury ensuing after 2-h middle cerebral artery occlusion followed by 22-h reperfusion. Consistently, neurological disorder was significantly improved by PEG-Hb. The results indicate that the pharmacological blockade of cerebral ischemic injury by using PEG-Hb may provide a useful strategy for the treatment of cerebral stroke.

Experimental Effects of Sibjeondaebo-tang and Gamy-Sibjeondaebo-tang on Cerebral Hemodynamics in Cerebral Ischemia Rats (십전대보탕(十全大補湯)과 가미십전대보탕(加味十全大補湯)이 뇌허혈 흰쥐의 뇌혈류역학에 미치는 실험적 영향)

  • Lee, Sang Young;Jeong, Hyun Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.173-182
    • /
    • 2013
  • This Study was designed to investigate the effects of Sibjeondaebo-tang (SDT) and Gamy-Sibjeondaebo-tang (GST, Sibjeondaebo-tang adding Cervi Pantotrichum Cornu) on the improvement in regional cerebral blood flow (rCBF) and mean arterial blood pressure (MABP) in normal rats, and in the rats with cerebral ischemia induced by middle cerebral artery occlusion, and further to determine the mechanisms. And, It was to investigate the effects of the SDT and GST with the change of histologic examination through the BDNF in the hippocampus CA1. In changes of cerebral hemodynamics, SDT and GST significantly increased rCBF in a dose-dependent manner but decreased MABP in normal rats. In mechanism of cerebral hemodynamics, Increase of GST-induced rCBF was significantly inhibited by pretreatment with methylene blue (0.01 mg/kg, i.p.), an inhibitor of guanylate cyclase, and Decrease of GST-induced MABP was significantly increased by pretreatment with methylene. These results suggested that the action of GST was mediated by guantlate cyclase pathway. In cerebral ischemics, the rCBF was stably improved by SDT (10 mg/kg, i.p.) significantly and stably increased by GST (10 mg/kg, i.p.) during the period of cerebral reperfusion, which contrast with the findings of rapid and marked increase in Control group. These results suggested that GST had anti-ischemic action in cerebral ischemic state. In histological examination through TTC stain, Sample A group and Sample B group decreased discoloration in the cortical part at $28^{th}$ day after MCAO induction. In immunohistochemistric response of BDNF, Sample A group and Sample B group increased respondent effect at $28^{th}$ day after MCAO induction. These results suggest that GST can Increase rCBF in normal state, as well as improve the stability of rCBF in cerebral ischemic state. Furthermore, methylene blue inhibitor study suggested the mechanism of blood flow enhancement by GST may be mediated by guanylate cyclase pathway.

Changes in Infarct Size after Reperfusion with Time in a Reversible Cerebral Ischemic Model in Rats (백서의 가역성 뇌허혈 모형에서 재관류 시간에 따른 뇌경색 크기의 변화)

  • Jung, Byoung Woo;Choi, Byung-Yon;Cho, Soo-Ho;Kim, Oh-Lyong;Bae, Jang-Ho;Kim, Seong-Ho
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.9
    • /
    • pp.1171-1178
    • /
    • 2000
  • Objective : The purpose of the present study was to determine the appropriate time of clinical intervention by observing and analyzing the changes in the size of infarct, penumbra and cerebral edema and the extend of neurological deficit due to reperfusion damage according to time in a reversible cerebral ischemic model of reperfusing blood flow after inducing ischemia by maintaining middle cerebral artery occlusion for 2 hours(h) in rats. Methods : The rats were divided according to reperfusion time into control group(0 h reperfusion time) and experimental groups(0.5, 1, 2, 3, 4, 5, 6, 12, and 24 h of reperfusion time). Results : Changes in the size of infarction due to reperfusion damage were 0.93, 1.48 and 1.16% at 0.5, 1 and 2 h after reperfusion, respectively, and although a statistical significance was not present compared to 1.35% of the control group, damages increased drastically up to 6 h(6.64%), and the size increased were 6.65 and 6.78% at 12 and 24 h, respectively. Also there was no significant difference after 6 h up to 24 h in the size of infarction. In the areas where infarction occurred, reperfusion damage increased significantly with time in cortex than in subcortex. Accordingly, the size of penumbra area also showed a statistically significant decrease from 2 h up to 6 h after reperfusion, and 6 h after reperfusion, the area almost disappeared, becoming permanent infarction. Thus, reperfusion damage showed a significant increase from 2 h up to 6 h after reperfusion, and became steady thereafter. As for the mean ratio of the extend of cerebral edema, the control group and reperfusion 0.5 h group were 1.073 and 1.081, respectively ; up to 2 h thereafter, the ratio decreased to 1.01 but increased again with time ; and in reperfusion 12 h and reperfusion 24 h, the ratios were 1.070 and 1.075, respectively, showing similar size with that of control group. As for neurological deficit scores, the score of the control group was 2.67, that of reperfusion 2 h was 2, those of reperfusion 3 h and 6 h groups were 3.2 and 3.8, respectively, and those of reperfusion 12 h and 24 h groups were 4.2 and 4.6, respectively. Thus, as for the test results, the neurological deficit increased with time 2 h after reperfusion, and in reperfusion 12 and 24 h groups, almost all the symptoms appeared. Conclusion : As shown in these results, although the changes in the size of infarction due to reperfusion damage did not increase up to 2 h after reperfusion in the experimental groups compared to the control group, damage increased significantly thereafter up to 6 h, and the size remained about the same from 6 h to 24 h after reperfusion, becoming permanent infarction ; thus, the appropriate time of intervention according to the present study is at least 6 h before after maintaining reperfusion, including the time of cerebral artery occlusion.

  • PDF

Neuroprotective Effect of Aloesin in a Rat Model of Focal Cerebral Ischemia

  • K.J. Jung;Lee, M.J.;E.Y. Cho;Y.S. Song;Lee, Y.H.;Park, Y.L.;Lee, Y.S.;C. Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.62-62
    • /
    • 2003
  • It is now convincing that free radical generation is involved in the pathophy siological mechanisms of ischemic stroke, particularly in ischemia-reperfusion injury. The present study, therefore, examined neuroprotective effect of aloesin isolated from Aloe vera, which was known to have antioxidative activity, in a rat model of transient focal cerebral ischemia. Transient focal cerebral ischemia was induced by occlusion of middle cerebral artery for 2 hr with a silicone-coated 4-0 nylon monofilament in male Sprague-Dawley rats under isoflurane anesthesia Aloesin (1, 3, 10, 30 and 50 mg/kg/injection) was administered intravenously 3 times at 0.5, 2 and 4 hr after onset of ischemia. Neurological score was measured 24 hr after onset of ischemia immediately before sacrifice. Seven serial coronal slices of the brain were stained with 2,3,5-triphenyltetrazolium chloride and infarct size was measured using a computerized image analyzer. Treatment with the close of 1 or 50 mg/kg did not significantly reduce infarct volume compared with the saline vehicle-treated control group. However, treatments with the closes of 3 and 10 mg/kg significantly reduced both infarct volume and edema by approximately 47% compared with the control group, producing remarkable behavioral recovery effect. Treatment with the close of 30 mg/kg also significantly reduced infarct volume to a lesser extent by approximately 33% compared with the control group, but produced similar degree of behavioral recovery effect. In addition, general pharmacological studies showed that aloesin was a quite safe compound. The results suggest that aloesin can serve as a lead chemical for the development of neuroprotective agents by providing neuroprotection against focal ischemic neuronal injury.

  • PDF