DOI QR코드

DOI QR Code

Attenuated Cerebral Ischemic Injury by Polyethylene Glycol-Conjugated Hemoglobin

  • Cho, Geum-Sil (Department of Neuroscience, College of Medicine, Korea University) ;
  • Choi, In-Young (Department of Neuroscience, College of Medicine, Korea University) ;
  • Choi, Yoo-Keum (Department of Neuroscience, College of Medicine, Korea University) ;
  • Kim, Seul-Ki (Department of Neuroscience, College of Medicine, Korea University) ;
  • Cai, Ying (Department of Neuroscience, College of Medicine, Korea University) ;
  • Nho, Kwang (SunBio Inc.) ;
  • Lee, Jae-Chul (Clinical Research Institute, Seoul National University Hospital)
  • Published : 2009.07.31

Abstract

Polyethylene glycol-conjugated hemoglobin (PEG-Hb) has been proposed as a blood substitute for transfusion due to their plasma expansion and oxygen transport capabilities. The protective effect of PEG-Hb on cerebral hypoxic-ischemic injury was investigated in neonatal hypoxia model and adult rat focal cerebral ischemia model. As intravenously administered 30 min before the onset of hypoxia, PEG-Hb markedly protected cerebral hypoxic injury in a neonatal rat hypoxia model. A similar treatment of PEG-Hb largely reduced the ischemic injury ensuing after 2-h middle cerebral artery occlusion followed by 22-h reperfusion. Consistently, neurological disorder was significantly improved by PEG-Hb. The results indicate that the pharmacological blockade of cerebral ischemic injury by using PEG-Hb may provide a useful strategy for the treatment of cerebral stroke.

Keywords

References

  1. Agardh, C. D., Zhang, H., Smith, M. L. and Siesjo, B. K. (1991). Free radical production and ischemic brain damage: influence of postischemic oxygen tension. Int. J. Dev. Neurosci. 9, 127-138 https://doi.org/10.1016/0736-5748(91)90003-5
  2. Alayash, A. I. (1999). Hemoglobin-based blood substitutes: oxygen carriers, pressor agents, or oxidants? Nat. Biotechnol. 17, 545-549 https://doi.org/10.1038/9849
  3. Bell, R. D., Frazer, G. D., Brock, D. G., Strause, J., Powers, B. L., Pelura, T. J., Kramer, M. S. and Osterholm, J. L. (2002). Reduction of cerebral infarction using the third circulation. Crit. Care Med. 30, 2684-2688 https://doi.org/10.1097/00003246-200212000-00012
  4. Bi, Z., He, X., Zhang, X., Jiang, Y., Zhao, K. and Liu Q. (2004). Pharmacodynamic study of polyethylene glycol conjugated bovine hemoglobin (PEG-bHb) in rats. Artif. Cells Blood Substit. Immobil. Biotechnol. 32, 173-187 https://doi.org/10.1081/BIO-120037826
  5. Buehler, P. W. and Alayash, A. I. (2004). Toxicities of hemoglobin solutions: in search of in-vitro and in-vivo model systems. Transfusion. 44, 1516-1530 https://doi.org/10.1111/j.1537-2995.2004.04081.x
  6. Chileuitt, L., Leber, K., McCalden, T. and Weinstein, P. R. (1996). Induced hypertension during ischemia reduces infarct area after temporary middle cerebral artery occlusion in rats. Surg. Neurol. 26, 229-234 https://doi.org/10.1016/0090-3019(95)00453-X
  7. Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95 https://doi.org/10.1152/physrev.00018.2001
  8. Hossman, K. A. (1994). Viability thresholds and penumbra of focal ischaemia. Ann. Neurol. 36, 557-565 https://doi.org/10.1002/ana.410360404
  9. Huang, Z., Huang, P. L., Panahian, N., Dalkara, T., Fishman, M. C. and Moskowitz, M. A. (1994). Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265, 1883-1885 https://doi.org/10.1126/science.7522345
  10. Hu, T., Manjula, B. N., Li, D., Brenowitz, M. and Acharya, S. A. (2007). Influence of intramolecular cross-links on the molecular, structural and functional properties of PEGylated haemoglobin. Biochem. J. 402, 143-151 https://doi.org/10.1042/BJ20061434
  11. Isaev, N. K., Stelmashook, E. V., Plotnikov, E. Y., Khryapenkova, T. G., Lozier, E. R., Doludin, Y. V., Silachev, D. N. and Zorov, D. B. (2008). Role of acidosis, NMDA receptors, and acid-sensitive ion channel 1a (ASIC1a) in neuronal death induced by ischemia. Biochemistry (Mosc) 73, 1171-1175 https://doi.org/10.1134/S0006297908110011
  12. Ito, T., Yamakawa, H., Bregonzio, C., Terron, J. A., Falcon-Neri, A. and Saavedra, J. M. (2002). Protection against ischemia and improvement of cerebral blood flow in genetically hypertensive rats by chronic pretreatment with an angiotensin II AT1 antagonist. Stroke. 33, 2297-2303 https://doi.org/10.1161/01.STR.0000027274.03779.F3
  13. Kawaguchi, A. T., Nakai, K., Fukumoto, D., Yamano, M., Haida, M. and Tsukada, H. (2009). S-nitrosylated pegylated hemoglobin reduces the size of cerebral infarction in rats. Artif. Organs. 33, 183-188 https://doi.org/10.1111/j.1525-1594.2008.00705.x
  14. Lee, J. C., Cho, G. S., Kim, H. J., Lim, J. H., Oh, Y. K., Nam, W., Chung, J. H. and Kim, W. K. (2005). Accelerated cerebral ischemic injury by activated macrophages/microglia after lipopolysaccharide microinjection into rat corpus callosum. Glia. 50, 168-181 https://doi.org/10.1002/glia.20164
  15. Li, F., Irie, K., Anwer, M. S. and Fisher, M. (1997). Delayed triphenyltetrazolium chloride staining remains useful for evaluating cerebral infarct volume in a rat stroke model. J. Cereb. Blood Flow. Metab. 17, 1132-1135 https://doi.org/10.1097/00004647-199710000-00016
  16. Otani, H., Jesmin, S., Togashi, H., Sakuma, I., Nakai, K., Satoh, H., Yoshioka, M. and Kitabatake, A. (2004). An S-nitrosylated hemoglobin derivative protects the rat hippocampus from ischemia-induced long-term potentiation impairment with a time window. J. Pharmacol. Sci. 96, 188-198 https://doi.org/10.1254/jphs.FP0040385
  17. Pulsinelli, W. (1992). Pathophysiology of acute ischaemic stroke. Lancet. 339, 533-536 https://doi.org/10.1016/0140-6736(92)90347-6
  18. Rice, J. E., Vannucci, R. C. and Brierley, J. B. (1981). The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann. Neurol. 9, 131-141 https://doi.org/10.1002/ana.410090206
  19. Rossi, S., Balestreri, M., Spagnoli, D., Bellinzona, G., Valeriani, V., Bruzzone, P., Maestri, M. and Stocchetti, N. (2000). Oxygen delivery and oxygen tension in cerebral tissue during global cerebral ischaemia: a swine model. Acta Neurochir. 76(Suppl), 199-202
  20. Spahn, D. R. and Kocian, R. (2005). Artificial O2 carriers: status in 2005. Curr. Pharm. Des. 11, 4099-4114 https://doi.org/10.2174/138161205774913354
  21. Winslow, R. M. (2008). Cell-free oxygen carriers: scientific foundations, clinical development, and new directions. Biochim. Biophys. Acta. 1784, 1382-1386 https://doi.org/10.1016/j.bbapap.2008.04.032