• Title/Summary/Keyword: ceramic tool

Search Result 224, Processing Time 0.028 seconds

Modified Inverted-F Type Wide Band Ceramic Dielectric Chip Antenna for IMT-2000 Handset (IMT-2000 단말기용 변형된 역 F형 광대역 세라믹 유전체 칩 안테나)

  • 이기성;채윤경;최익권
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.7
    • /
    • pp.625-632
    • /
    • 2002
  • In this paper, a wide band modified inverted-F type antenna printed on a high dielectric ceramic material is designed and fabricated. This antenna is designed to have optimum antenna characteristics analyzing the effects of design parameters such as printed antenna pattern, ceramic dielectric material dimension and dielectric constant on antenna characteristics using the commercial simulation tool HFSS. The fabricated antenna's width, length and height are 8 mm, 8 mm and 3 mm, respectively. Measurement results show that it has -10 dB bandwidth of 270 MHz which satisfies the IMT-2000 bandwidth required for handset and that its maximum radiation gain is 2 dBi.

Thermal Shock Tests and Thermal Shock Parameters for Ceramics

  • Awaji, Hideo;Choi, Seong-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • Thermal shock test methods and thermal shock parameters for ceramics were reviewed from the following viewpoints: (1) The test methods should be based on the precise estimation of both temperature and thermal stress distributions in a specimen taking into account the temperature-dependent thermo-mechanical properties; (2) The thermal shock parameters must be defined as a physical property of the materials and described as a function of temperature at the fracture point of the specimen; (3) The relation between the strength and fracture toughness of brittle ceramics under a thermal shock load must be the same as the relation under a mechanical load. In addition, appropriate thermal shock parameters should be defined by the thermal shock strength and thermal shock fracture toughness based on stress and energy criteria, respectively. A constant heat flux method is introduced as a testing technique suitable for estimating these thermal shock parameters directly from the electric power charged.

The Change of Porosity During the Fabrication of Vitreous Bonded CBN Tools (유리질 결합 CBN공구 제조시 기공량 변화)

  • Yang, Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.988-994
    • /
    • 1998
  • In the manufacturing of vitreous bonded CBN tool the porosity change associated with various processing conditions, I. e. the sintering temperature and the size and the amount of abrasive grits was observed. In the case of sintering of vitreous bond material only the specimen density reached the maximum at 950$^{\circ}C$ and then the total porosity was increased slightly with the temperature above 950$^{\circ}C$. In the sintering of a-brasive grits and the vitreous bond material together a marked increase in the total porosity was found with the temperature above 950$^{\circ}C$ Reducing the grit size at the constant volume fraction of abrasive grits showed an increase in the total porosity at whole sintering temperature. On the contrary. it was observed that increasing the volume fraction of abrasive grits with a same size showed the increased open porosity simultaneously with decreased closed porosity at whole sintering temperature.

  • PDF

Evaluation on Grinding Force of Ceramic Grinding by the Diamond Wheel (다이아몬드 휠에 의한 세라믹 연삭의 연삭력 평가)

  • 문홍현;김성청;공재향;박병규;소의열
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.43-47
    • /
    • 2002
  • In this study, through the experimental results of grinding ratio, grinding force and surface roughness with the obtained wear amount of diamond wheel and ceramic material during the grinding process, the following conclusions could be found. In the case of $Si_3N_4$, the wear of diamond wheel is large while the grinding force is stable and the range of change in surface roughness is small. for the case of $AL_2O_3$ and $ZrO_3$, while the wear of diamond wheel is getting smaller, the grinding force is increasing but the value of surface roughness is decreasing. For grinding with the vitrified bond wheel, it seems that the self-sharpening can be found for $Si_3N_4$ and the glazing effect of the cutting edge for $AL_2O_3$ and $ZrO_3$.

  • PDF

Ultra Precision Lapping of Machinable Ceramic by In-process Electrolytic Dressing (연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 래핑 가공)

  • 이은상;원종구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In-process Electrolytic Dressing is a lapping method using electrolysis. This technology provides dressing to CIB-Diamond Lapping wheels during the lapping process for continuous protrude abrasive from super-abrasive wheels. so loading and glazing are disappeared apparently. Ultra-precision lapping of the machinable commies will be studied in the viewpoint of In-process Electrolytic Dressing. For ultra-precision lapping, need to develop an ultra-precision lapping system suitable metal bonded diamond wheel, and appropriate condition of u10a-precision lapping machining.

Presintering Temperature for Improving the Tool Life in Machining of $Si_3N_4$ Ceramics ($Si_3N_4$ 세라믹의 가공성을 고려한 예비소결온도 선정)

  • Lee Jae-Woo
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.456-459
    • /
    • 2005
  • The setting of a presintering temperature is carried out on the basis of the Vickers hardness of the presintered compact in the method for producing a ceramic sintered compact comprising presintering a formed compact composed of a ceramic powder and a sintering assistant, then machining the presintering compact and subsequently sintering the machined compact. The Presintering temperature is preferably set at a temperature so as to provide 213-230 Hv Vickers hardness of the compact for presintering. Furthermore, the presintering temperature is preferably within the range of 1,300-1,450$^{\circ}C$.

  • PDF

Study on DC Characteristics of 4H-SiC Recessed-Gate MESFETs (Recessed-gate 4H-SiC MESFET의 DC특성에 관한 연구)

  • Park, Seung-Wook;Hwang, Ung-Jun;Shin, Moo-Whan
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • DC characteristics of recessed gate 4H-SiC MESFET were investigated using the device/circuit simulation tool, PISCES. Results of theoretical calculation were compared with the experimental data for the extraction of modeling parameters which were implemented for the prediction of DC and gate leakage characteristics at high temperatures. The current-voltage analysis using a fixed mobility model revealed that the short channel effect is influenced by the defects in SiC. The incomplete ionization models are found out significant physical models for an accurate prediction of SiC device performance. Gate leakage is shown to increase with the device operation temperatures and to decrease with the Schottky barrier height of gate metal.

Wear Characteristics of Diamond Wheel according to bond in Ceramic Grinding (세라믹 연삭에서 결합제에 따른 다이아몬드 휠의 마멸 특성)

  • 공재향;유봉환;소의열;이근상;유은이;임홍섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.75-81
    • /
    • 2002
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel during grinding ceramic materials. Normal component of grinding resistance was decreasing while increase of spindle speed. The resistance of vitrified bond wheel was less then that of resinoid bond wheel because of imbedded large holes on the surface of cutting edge. Surface roughness was decreasing while increase of spindle speed. The surface roughness using vitrified bond wheel was less than that of resinoid bond wheel because of small elastic deformation. After continuous finding of ceramics, cutting edge ratio of resinoid bond wheel decreased. For the case of vitrified bond wheel, cutting edge ratio did not change.

Evaluation for Grinding Performance of Ceramics (세라믹 재료의 연삭성능 평가)

  • 정을섭;김성청;김태봉;소의열;이근상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • In this study, experiments were carried out to investigate the characteristics of grinding and wear process of diamond wheel grinding ceramic materials. Normal component of grinding resistance of $AI_2O_3$ was less then that of $Si_3N_4$ and $ZrO_2$. It is because the resistance for grain shedding is less then that for layer formation. For the case of $Si_3N_4$ and $ZrO_2$, as the grain mesh number of wheel increases, the surface roughness decreases. For the case of $AI_2O_3$, the surface roughness does not decreases. For the case of $Si_3N_4$ and $ZrO_2$, grinding is carried out by abrasive wear processes. For the case of $AI_2O_3$, grinding is carried out by grain shedding process.

  • PDF

오일제트윤활방식의 25,000rpm급 모터내장형 고속주축계의 윤활특성에 관한 연구

  • 이용희;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.841-845
    • /
    • 1995
  • In this study, a motor-integrated high-speed spindle system with .psi. 65mm*25,000rpm is developed by introducing the oil-jet lubrication method,ceramic angular contact ball bearing, a built-in motor and so on. And oil-jet lubrication experiments for evaluating the system performance are performed under various operation conditions. Especially, in order to establish the oil-jet lubrication conditions related to the development of a high-speed spindle system, the effects of oil supply rate and rotational spindle speed are investigated on the temperature rise, temperature distribution,motor current and so on.

  • PDF