• Title/Summary/Keyword: ceramic pigments

Search Result 77, Processing Time 0.033 seconds

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

Preparation and Performance Evaluation of Zinc Phosphate-Coated Mica Anticorrrosive Pigment (운모상에 인산아연이 도포된 방청안료의 제조 및 성능평가)

  • Lee, Yu Jin;Park, Seong Soo;Hong, Seong Soo;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.257-263
    • /
    • 2013
  • The zinc phosphate-coated mica (ZP/mica) pigments were prepared using phosphoric acid, zinc nitrate and mica as starting materials, and used as anticorrosive pigments. The scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were used to observe the morphology and crystal structure of prepared pigments. The prepared pigments were incorporated into an epoxy binder to prepare coating and the corrosion inhibition performance of the pigments was evaluated using electrochemical impedance spectroscopy (EIS). It was found that the anticorrosive performance of the ZP/mica pigment prepared at $70^{\circ}C$ was the better than that prepared at $20^{\circ}C$. The formation of ZnO, in addition to $Zn_3(PO_4)_2{\cdot}2H_2O$, was observed on ZP/mica pigment prepared at $70^{\circ}C$. The excellent anticorrosive performance of ZP/mica pigment could be ascribed to the synergistic effect with electrochemical anticorrosive mechanism from zinc compounds on mica and barrier anticorrosive mechanism from lamellar mica.

Synthesis of ZnO-Al2O3-Cr2O3 System Pigments with CrCl3

  • Choi, Soo-Nyong;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.372-378
    • /
    • 2009
  • The coloring agents $Cr_2O_3$ and $CrCl_3$ were manipulated in this study to synthesize ZnO-$Al_2O_3-Cr_2O_3$ system pigments by changing their mixing ratio. The addition of varying amounts of mineralizer was also tested to obtain better color development of the pink pigment. In the synthesis of ZnO- $Al(OH)_3-Cr_2O_3-CrCl_3$ pigments, the best composition is $Cr_2O_3$-0.1 mole and $CrCl_3$-0.2 mole when $Cr_2O_3$ is partially substituted with $CrCl_3$ to synthesize them. Among the $ZnAl_{1.6-x}Cr_{0.2+x}O_4$ compositions to which a mineralizer was not added, ZnO-1mole, $Al(OH)_3$-1.7 mole, $Cr_2O_3$-0.075 mole, and $CrCl_3$-0.15 mole showed a desirable pink hue. The measurements of pigments $L^*$, $a^*$ and $b^*$, were $L^*$ 81.81, $a^*$ 16.65 and $b^*$ 0.45, and when the synthesized pigments were applied to a zinc glaze, the measurements were $L^*$ 60.41, $a^*$ 28.39, and $b^*$ 16.97. When adding a mineralizer, a 2 wt% addition resulted in the most favorable pink color. The composition for the most favorable result that included a mineralizer was $Al(OH)_3$-1.8 mole, $Cr_2O_3$-0.05 mole, and $CrCl_3$-0.1 mole, and the calcination temperature was $1250^{\circ}C$. The pigment color analysis showed $L^*$ 82.52, $a^*$17.14 and $b^*$-1.18, and the measurements of $L^*$, $a^*$ and $b^*$ in the glaze were $L^*$ 60.97, $a^*$ 28.77 and $b^*$ 13.72.

Preparation of Fe2O3 Coated on Mica for Infrared Reflectance Red Pigment and Thermal Property of Its Isolation-Heat Paint (Fe2O3가 코팅된 판상 mica의 적외선 반사용 적색안료 제조 및 차열도료의 열특성)

  • Lee, Hyun Jin;Kim, Dae Sung;Lee, Seung-Ho;Lim, Hyung Mi;Choi, Byung-Ki;Kang, Kwang-Jung;Jeong, Jae Il;Cho, Kum-Sung
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.61-67
    • /
    • 2015
  • $Fe_2O_3$ coated plate mica($Fe_2O_3$/mica) for infrared reflectance red pigment was prepared under hydrothermal treatment. $Fe_2O_3$ was perfectly coated on mica via the difference of surface charge between $Fe_2O_3$ and mica particles at pH 3. $Fe_2O_3$/mica was then calcined at $800^{\circ}C$ to stabilize the coated layer on mica. The infrared(IR) reflectance pigments were characterized by X-ray diffraction, FE-SEM, zeta potential, and a UV-Vis-NIR spectrophotometer. In particular, the CIE color coordinate and IR reflectance properties of $Fe_2O_3$/mica pigments were investigated in relation to the thickness variation of the $Fe_2O_3$ layer coated on mica of various lateral sizes. The isolation-heat red paints containing the pigments were prepared and optimized with a thinner, settling agent, and dispersant. Then, the films were made. The thermal property of isolation-heat on these films was observed through the relationship of the IR reflectance value, which was based on the variation of the $Fe_2O_3$ layer's thickness coated on mica and mica's lateral size as IR reflectance pigment. With an increase in IR reflectance on these films, the thermal property of isolation-heat was effectively enhanced.

Synthesis and Mechanism of Ni-Doped Hibonite Blue Pigments (Ni-Doped Hibonite 파란색 안료의 합성과 발색기구)

  • Kim, Gumsun;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.24 no.1
    • /
    • pp.43-47
    • /
    • 2014
  • NiO-doped hibonite pigments were synthesized by the solid state method to get stabilized blue color pigment in both oxidation and reduction atmospheres. Optimum substitution condition with NiO for hibonite blue pigment was investigated. Experimental results were comparable to those of previous cobalt-minimization studies performed with other phosphate- or oxide-based cobalt-containing ceramic pigments (having olivine ($Co_2SiO_4$), spinel ($CoAl_2O_4$), or with co-doped willemite ($(Co,Zn)_2SiO_4$) structures). Composition was designed varying the NiO molar ratio increasing with $SnO_2$. The optimum substitution content is 0.93 mole NiO with 0.75mole $SnO_2$. The characteristics of the synthesized pigment were analyzed by XRD, Raman spectroscopy, SEM, and UV-vis. Synthesized pigment was applied to a lime-barium glaze with 10 wt% each and fired at an oxidation atmosphere of $1250^{\circ}C/1h$ and a reducing atmosphere $1240^{\circ}C/1h$. Blue color was obtained with $L^*a^*b^*$ values at 43.39, -6.78, -18.20 under a reducing atmosphere and 41.66, -6.36, -14.7 under and oxidation atmosphere, respectively.

Reactions of Various Ceramic Materials with Cobalt Sulfate Solution (황산코발트 용액에 의한 다양한 세라믹소지의 반응)

  • Won, Il-An;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.24 no.2
    • /
    • pp.93-97
    • /
    • 2014
  • In this study, a cobalt sulfate ceramic coating was sintered on various clays at $1250^{\circ}C$. The specimen characteristics were investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), TG-DTA, UV-vis spectrophotometer, and HRDPM. The ceramic coating had a constant thickness of thousands ${\mu}m$, and the surface was confirmed to be densely fused. Other new compounds were produced by the cobalt sulfate sintering process and reactions. These compounds were a $CoAl_2O_4$ phase, $Co_2SiO_4$ phase, anorthite($CaAl_2Si_2O_8$) phase, and $FeAl_2O_4$ phase, respectively. UV properties of the coated specimen were investigated, celadon clay specimen in 530-550 nm band is showing a dark gray color. The white clay and white mix clay specimen in 460-500 nm band is showing a blue color. The cobalt-aluminate($CoAl_2O_4$) spinel and the cobalt-silicate olivine($Co_2SiO_4$) were the strongest of the ceramic pigments, producing a very pure, navy blue color.

Synthesis and Characterization of Brilliant Yellow Color Pigments using α-FeOOH Nanorods (α-FeOOH 나노로드를 이용한 선명한 황색 안료 합성 연구)

  • Yun, JiYeon;Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.23 no.6
    • /
    • pp.453-457
    • /
    • 2016
  • In this work, we synthesize brilliant yellow color ${\alpha}$-FeOOH by controlling the rod length and core-shell structure. The characteristics of ${\alpha}$-FeOOH nanorods are controlled by the reaction conditions. In particular, the length of the ${\alpha}$-FeOOH rods depends on the concentration of the raw materials, such as the alkali solution. The length of the nanorods is adjusted from 68 nm to 1435 nm. Their yellowness gradually increases, with the highest $b^*$ value of 57 based on the International Commission on Illumination (CIE) Lab system, by controlling the nanorod length. A high quality yellow color is obtained after formation of a silica coating on the ${\alpha}$-FeOOH structure. The morphology and the coloration of the nal products are investigated in detail by X-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and the CIE Lab color parameter measurements.

Synthesis of wagnerite and its analogues for ceramic pigments (ll) (도자기 유약용 Wagnerite의 합성(II))

  • Yong- Sun Chung;Keun Ho Auh
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.648-657
    • /
    • 1997
  • In order to investigate the polymorphism of wagnerite, the single phase of$Mg_3(PO_4)_2$ was synthesized by heating the stoichiometric mixture of $Mg_3(PO_4)_2$ and $MgF_2$ in a sealed platinum tube at $1040^{\circ}C$ (or 3 hours, One reversible inversion was detected at $1255^{\circ}C$ and the thermal decomposition was not observed until it reached the melting point. As a result, wagnerite is thermally stable enough to be used as pigments for glazes and plastics if substituted with divalent metal ions. The contractions of d-values in $Zn_4P_2O_8F_2$ and $Zn_3MgP_2O_8F_2$ phases were observed by the substitution with metal ions which resulted in intense purple, gold and green colors. Among the several attempts of charge - coupled sub-stitution, only $A^{1+}A_3^{2+}X^{5+}X^{6+}O_8_F2$ compositions were successful to synthesize the wagnerite phase.

  • PDF

Synthesis of wagnerite and its analogues for ceramic pigments (I) (도자기 유약용 Wagnerite의 합성(I))

  • Chung, Yong-Sun;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.640-647
    • /
    • 1997
  • Wagnerite ($Mg_2PO_4F)$ was successfully synthesized in a sealed platinum tube and the complete substitutions of $Co^{++}, Ni^{++}, Cu^{++} \;and\;Zn^{++}$for Mg were made in the wagnerite structure. Wagnerite did not decompose until it reached its melting temperature. It was observed that wagnerite underwent only one inversion at $1255^{\circ}C$, prior to melting at $1340^{\circ}C$. The lattice parameters of wagnerites were linearly increased by the substitutions of $Co^{++}$ and $Zn^{++}$ and decreased by the substitutions of $Ni^{++}$ and $Cu^{++}$. The substitutions of wagnerite with $Co^{++}, Ni^{++}$ and $Cu^{++}$ resulted in purple, orange and green colors, respectively, The colors of pigments became more intense and suitable for coloring of glazes and plastics as the amount of metal ions increased.

  • PDF

Synthesis and Formation Mechanism of ZrTiO4 Gray Pigment (ZrTiO4계 Gray 안료 합성과 형성기구)

  • Hwang, Dong-Ha;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.84-89
    • /
    • 2012
  • Attempts were made to develop a stable gray pigment at reducing atmosphere, substituting Ti in $ZrTiO_4$ with Mn, Fe, Co and Cu The pigment synthesized at $1300~1500^{\circ}C$ by solid state method with the composition of $ZrTi_{1-x-y}A_xB_yO_4$ (x = y = 0.005, 0.015, 0.035, 0.055, 0.075, 0.095, 0.115, 0.135, 0.155, 0.175 and 0.195 mole, A = Mn(III), Fe(III), Co(II, III) and Cu(II) (chromophores), B = Sb (counterion). The pigments were fired at $1400^{\circ}C$ for 3 h with substitute amount changes of Mn, Fe, Co and Cu to $ZrTiO_4$ crystals, and analyzed by Raman spectroscopy to figure out substitute limits. Results indicated 0.035 mole for Mn, 0.115 mole for Fe, 0.015 mole for Co and 0.015 mole for Cu as substitute limits, respectively. Figs. 1, 2, 3, and 4 represent each substitute pigments of Mn, Fe, Co and Cu. Synthesized pigment was applied to a lime and a lime-magnesia glaze at 7 wt% each, and fired at reducing atmosphere of $1240^{\circ}C$, soaking time 1h. Gray color was obtained with CIE-$L^*a^*b^*$ values at 44.55, -0.65, 1.19(Mn), 40.36, -0.90, 0.30(Fe), 42.63, -0.03, -1.49(Cu) and -40.79, -0.28, -0.91(Co), respectively.