• Title/Summary/Keyword: centrality measures

Search Result 91, Processing Time 0.023 seconds

Correlation Between Social Network Centrality and College Students' Performance in Blended Learning Environment (블렌디드 러닝 환경에서 사회 연결망 중심도와 학습자 성과 간의 상관관계)

  • Jo, II-Hyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.2
    • /
    • pp.77-87
    • /
    • 2007
  • The purpose of the study was to investigate the effects of social network centrality variables on students' performance in blended learning environment in a higher educational institution. Using data from 36-student course on Learning Theories and Their Implications on Instructional Design Practices, the researcher empirically tested how social network centrality variables - such as friendship network centrality, advice network centrality, and adversary network centrality - are correlated with academic achievement measures. Results indicate, as hypothesized, the friendship and advice centrality positively correlate with, whereas the adversary centrality being negatively correlate with application performance measures and test scores. The size and quality of posted online discussions are positively and strongly correlated with the advice network centrality.

  • PDF

Investigating Journal Citation Network with Centrality Measures in the Public Administration and Policy Field (중심성지수를 이용한 행정학·정책학 관련 학술지의 상호인용 네트워크 분석)

  • Choe, Jong-Mook
    • Journal of Digital Convergence
    • /
    • v.14 no.9
    • /
    • pp.301-308
    • /
    • 2016
  • Writing high-quality papers and publishing them at prestigious academic journals would be something that every scholar strives for. This study made a network with nine academic journals in South Korea in the field of public administration and public policy and analyzed the influence of academic journals through social network analysis. Using centrality measures, such as degree centrality, beta centrality, and eigenvector centrality, this study found that Korean Public Administration Review has the highest influence on the journal network, followed by Korean Public Studies Review. However, different choice of centrality measure led to different ranking of journals in terms of their influence.

Monte-Carlo Methods for Social Network Analysis (사회네트워크분석에서 몬테칼로 방법의 활용)

  • Huh, Myung-Hoe;Lee, Yong-Goo
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.401-409
    • /
    • 2011
  • From a social network of n nodes connected by l lines, one may produce centrality measures such as closeness, betweenness and so on. In the past, the magnitude of n was around 1,000 or 10,000 at most. Nowadays, some networks have 10,000, 100,000 or even more than that. Thus, the scalability issue needs the attention of researchers. In this short paper, we explore random networks of the size around n = 100,000 by Monte-Carlo method and propose Monte-Carlo algorithms of computing closeness and betweenness centrality measures to study the small world properties of social networks.

Invulnerability analysis of nuclear accidents emergency response organization network based on complex network

  • Wen Chen;Shuliang Zou;Changjun Qiu;Jianyong Dai;Meirong Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.8
    • /
    • pp.2923-2936
    • /
    • 2024
  • Modern risk management philosophy emphasizes the invulnerability of human beings to cope with all kinds of emergencies. The Nuclear Accidents Emergency Response Organization (NAERO) of Nuclear Power Plant (NPP) is the primary body responsible for nuclear accidents emergency response. The invulnerability of the organization to disturbance or attack from internal and external sources is crucial in the completion of its response missions, reduction of severity of accidents, and assurance of public and environmental safety. This paper focused on the NAERO of a certain NPP in China, and applied the complex network theory to construct the network model of the organization. The topological characteristics of the network were analyzed. Four importance evaluation indexes of network nodes including Degree Centrality (DC), Betweeness Centrality (BC), Closeness Centrality (CC) and Eigenvector Centrality (EC), along with Pearson coefficient correlation among the indexes were calculated and analyzed. Size of the Largest Connected Component (LCC) and Network Efficiency were used as measures regarding the invulnerability of the network. Simulation experiments were conducted to assess the invulnerability of network against various attack strategies. These experiments were conducted both in the absence of node protection measures and under protection measures with different node protection rates. This study evaluated the invulnerability of the NAERO network, and provided significant decision-making basis for the enhancement of the network's invulnerability.

Effect Analysis of an Additional Edge on Centrality and Ranking of Graph Using Computational Experiments (실험계산을 통한 에지 한 개 추가에 따른 그래프의 중심성 및 순위 변화 분석)

  • Han, Chi-Geun;Lee, Sang-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.16 no.5
    • /
    • pp.39-47
    • /
    • 2015
  • The centrality is calculated to describe the importance of a node in a graph and ranking is given according to the centrality for each node. There are many centrality measures and we use degree centrality, closeness centrality, eigenvector centrality, and betweenness centrality. In this paper, we analyze the effect of an additional edge of a graph on centrality and ranking through experimental computations. It is found that the effect of an additional edge on centrality and ranking of the nodes in the graph is different according to the graph structure using PCA. The results can be used for define the graph characteristics.

A Social Network Analysis of Research Key Words Related Smoke Cessation in South Korea (연결망 분석을 활용한 우리나라 금연연구 동향분석)

  • An, Eun-Seong
    • Health Policy and Management
    • /
    • v.29 no.2
    • /
    • pp.138-145
    • /
    • 2019
  • Background: The purpose of this study is supposed to figure out the keyword network from 2009 to 2018 with social network analysis and provide the research data that can help the Korea government's policy making on smoking cessation. Methods: First, frequency analysis on the keyword was performed. After, in this study, I applied three classic centrality measures (degree centrality, betweenness centrality, and eigenvector centrality) with R 3.5.1. Moreover, I visualized the results as the word cloud and keyword network. Results: As a result of network analysis, 'smoking' and 'smoking cessation' were key words with high frequency, high degree centrality, and betweenness centrality. As a result of looking at trends in keyword, many study had been done on the keyword 'secondhand smoke' and 'adolescent' from 2009 to 2013, and 'cigarette graphic warning' and 'electronic cigarette' from 2014 to 2018. Conclusion: This study contributes to understand trends on smoking cessation study and seek further study with the keyword network analysis.

Co-occurrence Patterns of Bird Species in the World

  • Kim, Young Min;Hong, Sungwon;Lee, Yu Seong;Oh, Ki Cheol;Kim, Gu Yeon;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.4
    • /
    • pp.478-482
    • /
    • 2017
  • In order to identify key nations and bird species of conservation concern we described multinational collaborations as defined using network analysis linked by birds that are found in all nations in the network. We used network analysis to assess the patterns in bird occurrence for 10,422 bird inventories from 244 countries and territories. Nations that are important in multinational collaborations for bird conservation were assessed using the centrality measures, closeness and betweenness centrality. Countries important for the multinational collaboration of bird conservation were examined based on their centrality measures, which included closeness and betweenness centralities. Comparatively, the co-occurrence network was divided into four groups that reveal different biogeographical structures. A group with higher closeness centrality included countries in southern Africa and had the potential to affect species in many other countries. Birds in countries in Asia, Australia and the South Pacific that are important to the cohesiveness of the global network had a higher score of betweenness centrality. Countries that had higher numbers of bird species and more extensively distributed bird species had higher centrality scores; in these countries, birds may act as excellent indicators of trends in the co-occurrence bird network. For effective bird conservation in the world, much stronger coordination among countries is required. Bird co-occurrence patterns can provide a suitable and powerful framework for understanding the complexity of co-occurrence patterns and consequences for multinational collaborations on bird conservation.

Identification of Key Nodes in Microblog Networks

  • Lu, Jing;Wan, Wanggen
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • A microblog is a service typically offered by online social networks, such as Twitter and Facebook. From the perspective of information dissemination, we define the concept behind a spreading matrix. A new WeiboRank algorithm for identification of key nodes in microblog networks is proposed, taking into account parameters such as a user's direct appeal, a user's influence region, and a user's global influence power. To investigate how measures for ranking influential users in a network correlate, we compare the relative influence ranks of the top 20 microblog users of a university network. The proposed algorithm is compared with other algorithms - PageRank, Betweeness Centrality, Closeness Centrality, Out-degree - using a new tweets propagation model - the Ignorants-Spreaders-Rejecters model. Comparison results show that key nodes obtained from the WeiboRank algorithm have a wider transmission range and better influence.

Monitoring social networks based on transformation into categorical data

  • Lee, Joo Weon;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.487-498
    • /
    • 2022
  • Social network analysis (SNA) techniques have recently been developed to monitor and detect abnormal behaviors in social networks. As a useful tool for process monitoring, control charts are also useful for network monitoring. In this paper, the degree and closeness centrality measures, in which each has global and local perspectives, respectively, are applied to an exponentially weighted moving average (EWMA) chart and a multinomial cumulative sum (CUSUM) chart for monitoring undirected weighted networks. In general, EWMA charts monitor only one variable in a single chart, whereas multinomial CUSUM charts can monitor a categorical variable, in which several variables are transformed through classification rules, in a single chart. To monitor both degree centrality and closeness centrality simultaneously, we categorize them based on the average of each measure and then apply to the multinomial CUSUM chart. In this case, the global and local attributes of the network can be monitored simultaneously with a single chart. We also evaluate the performance of the proposed procedure through a simulation study.

A Study on the Application to Network analysis on Importance of Author keyword based on Sequence of keyword (네트워크 분석을 통한 저자키워드 출현순서에 대한 의미 분석)

  • Kwon, Sun-young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.9-14
    • /
    • 2018
  • This study aims to investigate an importance of Author keyword with analysis the position of author keyword. An analysis was carried out on the position of author keyword. we examined an importance of Author keyword by using degree centrality, closeness centrality, betweenness centrality, eigenvector centrality. In the next stage, we performed analysis on correlation between network centrality measures and the position of keyword. As a result, degree centrality, closeness centrality, betweenness centrality, eigenvector centrality both has a high value in 4th author keyword order. eigenvector centrality was the comparatively effective method to separate of author keyword order method than other 3 centrality. Correlation analysis result shows that the network analysis value are increasing in order. This study has significance in that it was able to examine the author keyword behavior. Future research is needed to identify and supplement future situational factors, behavior, and psychology.