• Title/Summary/Keyword: central parallel

Search Result 259, Processing Time 0.038 seconds

On a functional central limit theorem for the multivariate linear process generated by positively dependent random vectors

  • KIM TAE-SUNG;BAEK JONG IL
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.119-121
    • /
    • 2000
  • A functional central limit theorem is obtained for a stationary multivariate linear process of the form $X_t=\sum\limits_{u=0}^\infty{A}_{u}Z_{t-u}$, where {$Z_t$} is a sequence of strictly stationary m-dimensional linearly positive quadrant dependent random vectors with $E Z_t = 0$ and $E{\parallel}Z_t{\parallel}^2 <{\infty}$ and {$A_u$} is a sequence of coefficient matrices with $\sum\limits_{u=0}^\infty{\parallel}A_u{\parallel}<{\infty}$ and $\sum\limits_{u=0}^\infty{A}_u{\neq}0_{m{\times}m}$. AMS 2000 subject classifications : 60F17, 60G10.

  • PDF

ON A FUNCTIONAL CENTRAL LIMIT THEOREM FOR THE LINEAR PROCESS GENERATED BY ASSOCIATED RANDOM VARIABLES IN A HILBERT SPACE

  • Ko, Mi-Hwa;Kim, Tae-Sung
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.1
    • /
    • pp.133-140
    • /
    • 2008
  • Let {${\xi}_k,\;k\;{\in}\;{\mathbb{Z}}$} be a strictly stationary associated sequence of H-valued random variables with $E{\xi}_k\;=\;0$ and $E{\parallel}{\xi}_k{\parallel}^2\;<\;{\infty}$ and {$a_k,\;k\;{\in}\;{\mathbb{Z}}$} a sequence of linear operators such that ${\sum}_{j=-{\infty}}^{\infty}\;{\parallel}a_j{\parallel}_{L(H)}\;<\;{\infty}$. For a linear process $X_k\;=\;{\sum}_{j=-{\infty}}^{\infty}\;a_j{\xi}_{k-j}$ we derive that {$X_k} fulfills the functional central limit theorem.

A FUNCTIONAL CENTRAL LIMIT THEOREM FOR MULTIVARIATE LINEAR PROCESS WITH POSITIVELY DEPENDENT RANDOM VECTORS

  • KO, MI-HWA;KIM, TAE-SUNG;KIM, HYUN-CHULL
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.301-315
    • /
    • 2005
  • Let $\{A_u,\;u=0,\;1,\;2,\;{\cdots}\}$ be a sequence of coefficient matrices such that ${\sum}_{u=0}^{\infty}{\parallel}A_u{\parallel}<{\infty}$ and ${\sum}_{u=0}^{\infty}\;A_u{\neq}O_{m{\times}m}$, where for any $m{\times}m(m{\geq}1)$, matrix $A=(a_{ij})$, ${\parallel}A{\parallel}={\sum}_{i=1}^m{\sum}_{j=1}^m{\mid}a_{ij}{\mid}$ and $O_{m{\times}m}$ denotes the $m{\times}m$ zero matrix. In this paper, a functional central limit theorem is derived for a stationary m-dimensional linear process ${\mathbb{X}}_t$ of the form ${\mathbb{X}_t}={\sum}_{u=0}^{\infty}A_u{\mathbb{Z}_{t-u}}$, where $\{\mathbb{Z}_t,\;t=0,\;{\pm}1,\;{\pm}2,\;{\cdots}\}$ is a stationary sequence of linearly positive quadrant dependent m-dimensional random vectors with $E({\mathbb{Z}_t})={{\mathbb{O}}$ and $E{\parallel}{\mathbb{Z}_t}{\parallel}^2<{\infty}$.

  • PDF

Influence of elastic T-stress on the growth direction of two parallel cracks

  • Li, X.F.;Tang, B.Q.;Peng, X.L.;Huang, Y.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.377-390
    • /
    • 2010
  • This paper studies fracture initiation direction of two parallel non-coplanar cracks of equal length. Using the dislocation pile-up modelling, singular integral equations for two parallel cracks subjected to mixed-mode loading are derived and the crack-tip field including singular and non-singular terms is obtained. The kinking angle is determined by using the maximum hoop stress criterion, or the ${\sigma}_{\theta}$-criterion. Results are presented for simple uniaxial tension and biaxial loading. The biaxiality ratio has a noticeable influence on crack growth direction. For the case of biaxial tension, when neglecting the T-stress the crack branching angle is overestimated for small crack inclination angles relative to the largest applied principal stress direction, and underestimated for large crack inclination angles.

Real-time direct kinematics of a double parallel robot arm (2단 평행기구 로봇 암의 실시간 순방향 기구학 해석)

  • Lee, Min-Ki;Park, Kun-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.144-153
    • /
    • 1997
  • The determination of the direct kinematics of the parallel mechanism is a difficult problem but has to be solved for any practical use. This paper presents the efficient formulation of the direct kinematics for double parallel robot arm. The robot arm consists of two parallel mechanism, which generate positional and orientational motions, respectively. These motions are decoupled by a passive central axis which is composed of four revolute joints and one prismatic joint. For a set of given lengths of linear actuators, the direct kinematics will find the joint displacements of th central axis from geometric constraints in each parallel mechanism. Then the joint displacements will be converted into the position and the orientation of the end effector of the robot arm. The proposed formulation is decoupled and compacted so that it will be implemented as a real-time direct kinematics. With the proposed formulation, we analyze the motion of the double parallel robot and show its characteristics. Specially, we investigate the workspace in terms of positional space as well as orientational space.

Design of a High Stiffness Machining Robot Arm with Double Parallel Mechanism (기계가공작업을 위한 강성이 큰 2단 평행구조 로보트 암 설계)

  • 이민기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.22-37
    • /
    • 1995
  • Industrial robot has played a central role in the production automation such as welding, assembling, and painting. There has been, however, little effort to the application of robots in machining work(grinding, cutting, milling, etc.) which is typical 3D work. The machining automation requires a high stiffness robot arm to reduce deformation and vibration. Conventional articulated robots have serially connecting links from the base to the gripper. So, they have very weak structure for he machining work. Stewart Platform is a typical parallel robotic mechanism with a very high stiffness but it has a small work space and a large installation space. This research proposes a new machining robot arm with a double parallel mechanism. It is composed of two platforms and a central axis. The central axis will connect the motions between the first and the second platforms. Therefore, the robot has a large range of work space as well as a high stiffness. This paper will introduce the machining work using the robot and design the proposed robot arm.

A Performance Comparison of Parallel Programming Models on Edge Devices (엣지 디바이스에서의 병렬 프로그래밍 모델 성능 비교 연구)

  • Dukyun Nam
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.4
    • /
    • pp.165-172
    • /
    • 2023
  • Heterogeneous computing is a technology that utilizes different types of processors to perform parallel processing. It maximizes task processing and energy efficiency by leveraging various computing resources such as CPUs, GPUs, and FPGAs. On the other hand, edge computing has developed with IoT and 5G technologies. It is a distributed computing that utilizes computing resources close to clients, thereby offloading the central server. It has evolved to intelligent edge computing combined with artificial intelligence. Intelligent edge computing enables total data processing, such as context awareness, prediction, control, and simple processing for the data collected on the edge. If heterogeneous computing can be successfully applied in the edge, it is expected to maximize job processing efficiency while minimizing dependence on the central server. In this paper, experiments were conducted to verify the feasibility of various parallel programming models on high-end and low-end edge devices by using benchmark applications. We analyzed the performance of five parallel programming models on the Raspberry Pi 4 and Jetson Orin Nano as low-end and high-end devices, respectively. In the experiment, OpenACC showed the best performance on the low-end edge device and OpenSYCL on the high-end device due to the stability and optimization of system libraries.

A Functional Design of Programmable Logic Controller Based on Parallel Architecture (병렬 구조에 의한 가변 논리제어장치의 기능적 설계)

  • 이정훈;신현식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.836-844
    • /
    • 1991
  • PLC(programmable logic controller) system is widely used for the control of factory. PLC system receives ladder diagram which is drawn by the user to implement hardware logic, converts the ladder diagram into sequence program which is executable in the PLC system, and executes the sequence program indefinitely unless user breaks. The sequence program processes the data of on/off signal, and endures 1 scan delay and missing of pulse-type signal shorter than a scan time. So, data dependency doesn't exist. By applying theis characteristics to multiprocessor architecture, we design parellel PLC functionally and evaluate performance upgrade. Parallel PLC consists of central processing module, N general processing unit, and a shared memory by master-slave type. Each module executes allocated sequence program by the control of central processing module. We can expect performance upgrade by parallel processing, and reliability by relocation of sequence program when error occurs in processing module.

  • PDF

Study on Design, Control and Program of a parallel manipulator for machining work (기계가공로봇의 설계, 제어 및 프로그램에 관한 연구)

  • 박근우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.519-522
    • /
    • 2001
  • In this paper, I propose double parallel manipulator for machining work. And I derive an kinematics by combining the kinematics of the central axis and the kinematics of the link train of linear actuator. The Jacobian of the central axis and the Jacobian of the link train of the linear actuators are induced by a motor algebra and they are combined to an entire Jacobian matrix to transform the velocity of the end effector to those of linear actuators. And then this paper presents the development of control system and user interface program for machining work.

  • PDF

3D Surface Model Generation of Micro Structure by Self Calibration of The SEM Image (SEM 영상의 자체검정에 의한 미세구조물의 3차원 표면모델 생성)

  • 이효성;박형동
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.151-159
    • /
    • 2003
  • This study presents method for self-calibration of the SEM(Scanning Electron Microscope) stereo image using the standard microprobe with same grid pattern and using parallel and central perspective projection equation. Result showed that parallel projection method is more suitable for standard microprobe. The maximum error of 3D coordinates acquired by this method did not exceed 5 $\mu\textrm{m}$, and DSM(Digital Surface Model) for three dimensional measurement of the rock sample was generated by the digital photogrammetry. This result can be used for quantification of micro scale change of shape and analysis of the micro morphology of rock due to weathering.

  • PDF