• Title/Summary/Keyword: cement-soil

Search Result 612, Processing Time 0.032 seconds

The Strength Properties of Cement-Bentonite Soil Mixtures with Geosynthetics and Metakaolin (토목섬유 및 메타카올린 첨가 시멘트-벤토나이트 혼합토의 강도 특성)

  • Lee, Jae-Deuk;Yeon, Kyu-Seok;Kim, Kwang-Woo;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.159-167
    • /
    • 2012
  • In the present study, an investigation has been made on the application of cement-bentonite soil mixtures as the countermeasure against leachate produced by buried animal carcasses. For this purpose, the strength characteristics of the cement-bentonite soil mixtures mixed with geotextile and metakaolin. After the mixtures with different contents of the cement (0 %, 10 %), bentonite (0 %, 5 %, 10 %, 15 %, 20 %), and weathered soil (100 %, 95 %, 90 %, 85 %, 80 %) were prepared, metakaolin and geotextile were added with different contents (metakaolin : 0 %, 5 %, 10 %, 15 %, 20 % of the cement weight; geotextile : 0 %, 0.5 %, 1 %, 1.5 %, 2 %). Experimental results suggested that the early strength of the mixture increases due to the pore filling, the hydration acceleration, and the pozzolan reaction when metakaolin of 5~10 % of the cement weight was added. In addition, the compressive strength increase when 0.5~1 % geotextile contents were added, and the above these contents, the rate of strength increase was gradually decreased because of the fibrous tangles.

A Study on Recycle of Excavated Soil from Ballast Cleaning (철도 도상자갈치기 발생토사의 재활용에 관한 연구)

  • Kim, Young-Chul;Kim, Youn-Sin;Kim, Kyung-Soo;Jeong, Chan-Ill;Lee, Eui-Hak
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1757-1763
    • /
    • 2011
  • In recent years, accordance to industrial development project on railway investment, adverse environmental issues of the investment, such as disputed cases about recycling and usage of Ballast Cleaner excavated soil, have been continuously increasing. It will not only enhance the regulation of soil contamination but take considerable time and cost in future. In this study, we investigated soil contamination and burnability with soil of Chungang Line, Taebaek Line, Chungbuk Line, in order to seize a possibility of recycling Ballast Cleaner excavated soil for the natural materials and substantial heat sources, which are necessary resources for cement manufacturing process. As a result of this study, It is found that Ballast Cleaner excavated soil is satisfied with a standard. The excavated soil contains a lot of cement ingredients and fossil fuel dust incurred from freight transportation, so it is expected to use for ingredients of cement and replacement of heat sources.

  • PDF

Strength Characteristics of Soil Concrete Using Jeju Volcaniclastic and Construction Techniques (제주도 석산 부산물인 화산토를 사용한 흙포장의 강도 및 시공 특성)

  • Hong, Chong-Hyun
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, a series of soil concrete mixtures were tested for the compressive strength according to ratio of aggregate to binder, compaction energy, maximum aggregate size, ratio of silica fume to cement, and ratio of water to binder. The optimum mixing ratio of soil concrete mixtures composed of volcaniclastic, cement, silica fume, concrete polymer and water were analysed. The test results for optimum proportion were as follows ; (1)ratio of aggregate to binder was 4 : 1, (2)compaction energy level was level 2, (3)maximum aggregate size was 13 mm, (4)ratio of silica fume to cement was 10%, (5)ratio of water to binder was 25%. Also, dry type construction techniques were applied using the optimum soil concrete mixture. From the results of this study, the compressive strength of soil concrete and construction techniques were suitable for making eco-friendly soil pavement.

Deformation Characteristics of Soil-Cement Mixtures under Repeated load (반복하중(反復荷重)을 받는 Soil-Cement의 변형특성(變形特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.3
    • /
    • pp.125-131
    • /
    • 1989
  • Since the paved road suffers from various types of repeated loads for the duration of it's life, it is likely to cause permanent deformation and fatigue finaly destroying the pavement performance. Accordingly, if we are to keep the pavement performance in good condition, it is required to take staps to prevent such troubles from happening in each stage of pavement, and thus to improve the stability of pavement. We find it is quite important to settle the problems such as permanent deformation and fatigue rupture by repeated loads both on subbase course and on subgrade. In this regard, we examined the deformation characteristics of soil cements, on which repeated loads are applied. For the effective examination, we chose to use soil-cements made of cohesive soil and sandy soil respectively, which had $20kg/cm^2$ of unconfined compression strength, at the age of 7 days. The experimental results are: 1. The elastic modulus of soil cement from sandy soil is higher than that of soil cement from cohesive soil. 2. The elastic modulus thends to decrease as the repeated loads rund up to 1,000 times, while increasing between 1,000 times and $1{\times}10^5$ times. 3. Unconfined compression strength is seen to increase about 30%.

  • PDF

Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study

  • Ghareh, Soheil;Kazemian, Sina;Shahin, Mohamed
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2020
  • Tropical organic soils having more than 65% of organic matters are named "peat". This soil type is extremely soft, unconsolidated, and possesses low shear strength and stiffness. Different conventional and industrial binders (e.g., lime or Portland cement) are used widely for stabilisation of organic soils. However, due to many factors affecting the behaviour of these soils (e.g., high moisture content, fewer mineral particles, and acidic media), the efficiency of the conventional binders is low and/or cost-intensive. This research investigates the impact of different constituents of cement-sodium silicate grout system on the compressibility behaviour of organic soil, including settlement and void ratio. A microstructure analysis is also carried out on treated organic soil using Scanning Electron Micrographs (SEM), Energy Dispersive X-ray spectrometer (EDX), and X-ray Diffraction (XRD). The results indicate that the settlement and void ratio of treated organic soils decrease gradually with the increase of cement and kaolinite contents, as well as sodium silicate until an optimum value of 2.5% of the wet soil weight. The microstructure analysis also demonstrates that with the increase of cement, kaolinite and sodium silicate, the void ratio and porosity of treated soil particles decrease, leading to an increase in the soil density by the hydration, pozzolanic, and polymerisation processes. This research contributes an extra useful knowledge to the stabilisation of organic soils and upgrading such problematic soils closer to the non-problematic soils for geotechnical applications such as deep mixing.

Field Study for Application of Soil Cementation Method Using Alkaliphilic Microorganism and Low-cost Badge (극한미생물과 저가 배지를 이용한 지반고결제의 현장 적용 연구)

  • Choi, Sun-Gyu;Chae, Kyung-Hyeon;Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.37-46
    • /
    • 2015
  • In this study, a blast furnace slag with the alkaliphilic microorganism (Bacillus halodurans) alkaline activator was used to cement natural soils in the field. A low-cost and massive microbial solution for cementation of field soils was produced and compared with existing microbial culture in terms of efficiency. A field soil was prepared for three different cementation areas: a cemented ground with microbial alkaline activator (Microbially-treated soil), a cemented ground with ordinary Portland cement (Cement-treated soil), and untreated ground (Non-treated soil). The testing ground was prepared at a size of 2.6 m in width, 4 m in length, and 0.2 m in depth. After 28 days, a series of unconfined compression tests on the cement-treated and microbially-treated soils were carried out. On the other hand, a torvane test was carried out for non-treated soil. The strength of field soils treated with microorganism was 1/5 times lower than those of cement-treated soil but is 6 times higher than non-treated soil. The pH measured from microbially-treated soil was about 10, which is lower than that of cement-treated soil (pH = 11). Therefore, it is more eco-friendly than Portland cemented soils. The C-S-H hydrates were found in both cement- and microbially-treated soils through SEM-EDS analyses and cement hydrates were also found around soil particles through SEM analysis.

Mechanical characteristics of cement-stabilized kaolin by SEM analysis (SEM 해석을 이용한 시멘트 안정처리 카올린의 공학적 특성)

  • Lee, Kyu-Hwan;Jung, Dae-Suck
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1142-1147
    • /
    • 2006
  • Cement-stabilized clay has widespread applications in Deep Mixing projects, whereby soft deep clay deposits are improved through the addition of cement. While much research on this subject has taken place over the past decade, the strength and deformation behaviour of cement-stabilized clay is still not well understood. An extensive laboratory program was conducted on kaolin stabilized with up to 10% cement. Water curing was employed for durations up to 112 days. To study the microstructure of raw and stabilized soil, use is made of SEM. Micrographs of selected raw and stabilized soil were obtained. These micrographs were closely analyzed for any change in the microstructure of the soil as a result of stabilization.

  • PDF

Mechanical Properties of Lean-mixed Cement-treated Soil for Effective Reuse of Dredged Clay (준설점토의 친환경 재활용을 위한 시멘트계 처리토의 장단기 역학거동)

  • Kwon, Youngcheul;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.9
    • /
    • pp.71-78
    • /
    • 2011
  • Cement treating technique, such as deep mixing method, has been used widely to stabilize the dredged clayey soil for many years. Despite of its effectiveness in treating soil by cement, several efforts have also been made to try to reduce the side effect of the cement that used to stabilize the dredged clay. However, authors considered that more detailed study on the physical and mechanical properties of lean-mixed soil-cement has been required to establish the design procedure to apply the practical problems. Therefore, in this study, the curing time and mixing ratio was used as key parameters to estimate the physical and mechanical properties including long-term behavior. The unconfined strength of lean-mixed soil-cement increase continuously during curing period, 270 days, while increasing rate becomes low in ordinary cement-treated dredged clay. We also concluded that cement-treated dredging clay shows apparent quasi overconsolidation behavior even in low cement proportion. By this study, fundamental approach was carried out for effective reuse of very soft dredged clayey soil both in mechanical and environmental aspect. It can be also expected that this study can propose a basic design data to use the lean-mixed soil cement.

Laboratory tests for studying the performance of grouted micro-fine cement

  • Aflaki, Esmael;Moodi, Faramarz
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.145-154
    • /
    • 2017
  • In geological engineering, grouting with Portland cement is a common technique for ground improvement, during which micro-fine cement is applied as a slurry, such that it intrudes into soil voids and decreases soil porosity. To determine the utility and behavior of cements with different Blaine values (index of cement particle fineness) for stabilization of fine sand, non-destructive and destructive tests were employed, such as laser-ray determination of grain size distribution, and sedimentation, permeability, and compressive strength tests. The results of the experimental study demonstrated a suitable mix design for the upper and lower regions of the cement-grading curve that are important for grouting and stabilization. Increasing the fineness of the cement decreased the permeability and increased the compressive strength of grouted sand samples considerably after two weeks. Moreover, relative to finer (higher Blaine value) or coarser (lower Blaine value) cements, cement with a Blaine value of $5,100cm^2/g$ was optimal for void reduction in a grouted soil mass. Overall, study results indicate that cement with an optimum Blaine value can be used to satisfy the designed geotechnical criteria.

Physical properties of Reinforced soil Mixture powder (보강혼합토분의 물리적 특성)

  • 이상호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.5
    • /
    • pp.125-132
    • /
    • 2000
  • This study was performed to evaluate the physical properties of reinforced soil mixture powder. Soil sample was prepared by passing into the standard sieve of No. 200 and reinforcement materials were calcium carbonate, quicklime and portland cement. Fineness, setting time, and compressive strength test for reinforced soil mixture powder were performed and analyzed to investigate their physical properties. The main results were summarized as follow. The compressive strength of soil mixture powder itself and most reinforced was reinforced according to increasing in the mixture rate of reinforcement and the rate of increase was remarkably higher in the cement reinforced soil moisture powder. It was appeared that the early compressive strength is considering higher in the cement reinforced soil moisture powder with 2% of moisture rate of accelerator.

  • PDF