• 제목/요약/키워드: cellulase and xylanase

검색결과 170건 처리시간 0.028초

Pleurotus ostreatus 균사의 생장 촉진 효과를 나타내는 고온성 곰팡이의 특징 (The Characteristics of Thermophilic Fungi in Relation to Growth-Promoting Effect on the Mycelium of Pleurotus ostreatus)

  • 이호용;신창엽;김준호;김원록;이영근;장화형;송인근;현성희;민봉희
    • 한국균학회지
    • /
    • 제28권2호
    • /
    • pp.97-102
    • /
    • 2000
  • 느타리버섯의 균사 생장을 촉진시키고 병원성 균류의 생장을 억제하므로 느타리버섯의 생산을 증가시키는 고온성 미생물을 분리하고 그 원인을 생화학적으로 조사하였다. 느타리버섯 배지로부터 분리한 7종의 고온성 곰팡이에서 모두 lignin 분해 활성 능은 확인되지 않았고, xylanase 분해능은 모든 분리 균에서 확인되었으며, 특히 H. grisea var. thermoidea와 Sepedonium sp. S-2 분리균류에서 높은 활성을 나타내었다. Cellulose 배지에서 균사 생장은 나타났으나 그 분해는 확인 할 수 없는 반면 MUF-test로 확인한 세포외 분비 cellulase의 활성도는 Sepedunium sp. S-2와 S-5에서 가장 높은 활성을 나타내었다. 이들 두 균류는 느타리버섯 생장을 50%증가시켰으며, 푸른곰팡이병 원인균인 Trichoderma sp. SJG-51에 대한 생장억제효과도 나타내었다 이상의 결과로 보아 고온성 곰팡이 Sepedonium sp. 일부는 느타리버섯 재배 시 배지의 물성변화를 일으키는 효소를 분비하여 버섯 생장률 증가 및 유해균류의 생장을 억제하였다 따라서 느타리버섯 배지 제조에 있어 이들 고온성 곰팡이들이 매우 유용할 것으로 판단된다.

  • PDF

Effects of Saccharomyces cerevisiae and phytase co-fermentation of wheat bran on growth, antioxidation, immunity and intestinal morphology in broilers

  • Chuang, Wen-Yang;Lin, Li-Jen;Hsieh, Yun-Chen;Chang, Shen-Chang;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • 제34권7호
    • /
    • pp.1157-1168
    • /
    • 2021
  • Objective: The aim of this study was to investigate the effects of different amounts of wheat bran (WB) inclusion and postbiotics form by Saccharomyces cerevisiae and phytase co-fermented wheat bran (FWB) on the growth performance and health status of broilers. Methods: Study randomly allocated a total of 300 male broilers to a control and 4 treatment groups (5% WB, 5% FWB, 10% WB, and 10% FWB inclusion, respectively) with each pen having 20 broilers and 3 pens per treatment. Results: The WB does not contain enzymes, but there are 152.8, 549.2, 289.5, and 147.1 U/g dry matter xylanase, protease, cellulase and β-glucanase in FWB, respectively. Furthermore, FWB can decrease nitric oxide release of lipopolysaccharide stimulated chicken peripheral blood mononuclear cells by about two times. Results show that 10% FWB inclusion had significantly the highest weight gain (WG) at 1 to 21 d; 5% FWB had the lowest feed conversion rate at 22 to 35 d; 10% WB and 10% FWB inclusion have the highest villus height and Lactobacillus spp. number in caecum; and both 5% and 10% FWB can increase ash content in femurs. Compared to control group, all treatments increase mucin 2, and tight junction (TJ), such as occludin, claudin-1, zonula occludens-1, and mRNA expression in ileum by at least 5 folds. In chicken peripheral blood mononuclear cells, nicotinamide adenine dinucleotide phosphate-oxidase-1 mRNA expression decreases from 2 to 5 times, and glutamate-cysteine ligase catalytic subunit mRNA expression also increases in all treatment groups compared to control group. The mRNA expression of pro-inflammatory cytokines, including interleukin-6 (IL-6), nuclear factor-κB, and IL-1β, decreases in 5% and 10% FWB groups compared to control group. Conclusion: To summarize, both WB and FWB inclusion in broilers diets increase TJ mRNA expression and anti-oxidation and anti-inflammation, but up to 10% FWB groups have better WG in different stages of broiler development.

Isolation of cellulosic biomass degrading microorganisms from different sources for low cost biofuel production

  • ;김철환;이지영;;박혁진;;김성호;김재원
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2011년도 춘계학술발표회 논문집
    • /
    • pp.81-91
    • /
    • 2011
  • Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. Recently, a large amount of studies regarding the utilization of lignocellulosic biomass as a good feedstock for producing fuel ethanol is being carried out worldwide. The plant biomass is mainly composed of cellulose, hemicellulose and lignin. The main challenge in the conversion of biomass into ethanol is the complex, rigid and harsh structures which require efficient process and cost effective to break down. The isolation of microorganisms is one of the means for obtaining enzymes with properties suitable for industrial applications. For these reasons, crude cultures containing cellulosic biomass degrading microorganisms were isolated from rice field soil, cow farm soil and rotten rice straw from cow farm. Carboxymethyl cellulose (CMC), xylan and Avicel (microcrystalline cellulose) degradation zone of clearance on agar platefrom rice field soil resulted approximately at 25 mm, 24 mm and 22 mm respectively. As for cow farm soil, CMC, xylan and Avicel degradation clearancezone on agar plate resulted around at 24mm, 23mm and 21 mm respectively. Rotten rice straw from cow farm also resulted for CMC, xylan and Avicel degradation zone almost at 24 mm, 23 mm and 22 mm respectively. The objective of this study is to isolatebiomass degrading microbial strains having good efficiency in cellulose hydrolysis and observed the effects of different substrates (CMC, xylan and Avicel) on the production of cellulase enzymes (endo-glucanase, exo-glucanase, cellobiase, xylanase and avicelase) for producing low cost biofuel from cellulosic materials.

  • PDF

Isolation and Characterization of Airborne Mushroom Damaging Trichoderma spp. from Indoor Air of Cultivation Houses Used for Oak Wood Mushroom Production Using Sawdust Media

  • Kim, Jun Young;Kwon, Hyuk Woo;Lee, Dong Hyeung;Ko, Han Kyu;Kim, Seong Hwan
    • The Plant Pathology Journal
    • /
    • 제35권6호
    • /
    • pp.674-683
    • /
    • 2019
  • Some species of the Trichoderma genus are reported as the major problem in oak wood mushroom production in Korea. In spite of economic loss by the fungi, scientific information on airborne Trichoderma species is not much available. To generate information for disease management development we analyzed airborne Trichoderma. A total of 1,063 fungal isolates were purely obtained from indoor air sampling of cultivation houses used for oak wood mushroom using sawdust media. Among the obtained isolates, 248 isolates were identified as Trichoderma fungi including T. harzianum, T. atroviride, T. citrinoviride, and T. pseudokoningii, by morphological and molecular analysis. T. harzianum was dominant among the four identified species. All the four Trichoderma species grew fast on solid nutrient media tested (potato dextrose agar [PDA], malt extract agar [MEA], Czapek's Dox + yeast extract agar [CYA] and cornmeal dextrose agar). Compact mycelia growth and mass spore production were better on PDA and CYA. In addition, T. harzianum and T. citrinoviride formed greenish and yellowish mycelium and spores on PDA and CYA. Greenish and yellowish pigment was saturated into PDA only by T. pseudokoningii. These four Trichoderma species could produce extracellular enzymes of sawdust substrate degradation such as β-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease. Their mycelia inhibited the growth of oak wood mushroom mycelia of two tested cultivars on dual culture assay. Among of eleven antifungal agents tested, benomyl was the best to inhibit the growth of the four Trichoderma species. Our results demonstrate that the airborne Trichoderma fungi need to be properly managed in the cultivation houses for safe mushroom production.

Extraction and Application of Bulk Enzymes and Antimicrobial Substance from Spent Mushroom Substrates

  • Lim, Seon-Hwa;Kwak, A Min;Min, Kyong-Jin;Kim, Sang Su;Kang, Hee Wan
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.19-19
    • /
    • 2014
  • Pleurotus ostreatus, P. eryngii, and Flammulina velutipes are major edible mushrooms that account for over 89% of total mushroom production in Korea. Recently, Agrocybe cylindracea, Hypsizygus marmoreus, and Hericium erinaceu are increasingly being cultivated in mushroom farms. In Korea, the production of edible mushrooms was estimated to be 614,224 ton in 2013. Generally, about 5 kg of mushroom substrate is needed to produce 1 kg of mushroom, and consequently about 25 million tons of spent mushroom substrate (SMS) is produced each year in Korea. Because this massive amount of SMC is unsuitable for reuse in mushroom production, it is either used as garden fertilizer or deposited in landfills, which pollutes the environment. It is reasonably assumed that SMS includes different secondary metabolites and extracellular enzymes produced from mycelia on substrate. Three major groups of enzymes such as cellulases, xylanases, and lignin degrading enzymes are involved in breaking down mushroom substrates. Cellulase and xylanase have been used as the industrial enzymes involving the saccharification of biomass to produce biofuel. In addition, lignin degrading enzymes such as laccases have been used to decolorize the industrial synthetic dyes and remove environmental pollutions such as phenolic compounds. Basidiomycetes produce a large number of biologically active compounds that show antibacterial, antifungal, antiviral, cytotoxic or hallucinogenic activities. However, most previous researches have focused on therapeutics and less on the control of plant diseases. SMS can be considered as an easily available source of active compounds to protect plants from fungal and bacterial infections, helping alleviate the waste disposal problem in the mushroom industry and creating an environmentally friendly method to reduce plant pathogens. We describe extraction of lignocellulytic enzymes and antimicrobial substance from SMSs of different edible mushrooms and their potential applications.

  • PDF

Limits of Exogenous Fibrolytic Enzymes to Improve Digestion and Intake of a Tropical Grass

  • Assoumaya, C.;Boval, M.;Weisbecker, J.L.;Saminadin, G.;Archimede, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권6호
    • /
    • pp.914-919
    • /
    • 2007
  • The effect of the addition of exogenous fibrolytic enzymes (mainly xylanase and cellulase activities, 15 ml/15 kg of fresh forage), on intake, total tract digestibility and nylon bag degradability of a chopped fresh Digitaria decumbens grass was studied at 2 stages of regrowth ( 21 and 56-day old grasses). Moreover, comparisons between ground and chopped grass were done using the nylon bag degradability method. DM intake (g/kg $BW^{0.75}$) and organic matter total tract digestibility for control and enzyme treatments respectively were 69.1 vs. 65.9 (p>0.05) and 0.723 vs. 0.727 (p>0.05) with the 21-day old regrowth. Based on the same parameters, values for the 56-day old grass were 58.1 vs. 52.7 (p>0.05) and 0.621 vs. 0.591 (p>0.05). Nylon bag degradation at 24 h of the dry matter for control versus enzyme treatments were 0.653 vs. 0.70 (p<0.05) and 0.644 vs. 0.733 (p<0.0001) for the 21-day old chopped and ground forage respectively, whereas with the 56-day old grass, corresponding values were 0.321 vs. 0.392 (p<0.0001) and 0.463 vs. 0.481 (p>0.05). The positive impact of exogenous fibrolytic enzymes (EFE) on degradability of the young and ground pangola grass may suggest that in some cases, enzyme accessibility to potentially digestible cell wall is a limiting factor in their digestion.

Genetic and Biochemical Characterization of Monokaryotic Progeny Strains of Button Mushroom (Agaricus bisporus)

  • Kwon, Hyuk Woo;Choi, Min Ah;Yun, Yeo Hong;Oh, Youn-Lee;Kong, Won-Sik;Kim, Seong Hwan
    • Mycobiology
    • /
    • 제43권1호
    • /
    • pp.81-86
    • /
    • 2015
  • To promote the selection of promising monokaryotic strains of button mushroom (Agaricus bisporus) during breeding, 61 progeny strains derived from basidiospores of two different lines of dikaryotic parental strains, ASI1038 and ASI1346, were analyzed by nucleotide sequencing of the intergenic spacer I (IGS I) region in their rDNA and by extracellular enzyme assays. Nineteen different sizes of IGS I, which ranged from 1,301 to 1,348 bp, were present among twenty ASI1346-derived progeny strains, while 15 different sizes of IGS I, which ranged from 700 to 1,347 bp, were present among twenty ASI1038-derived progeny strains. Phylogenetic analysis of the IGS sequences revealed that different clades were present in both the ASI10388- and ASI1346-derived progeny strains. Plating assays of seven kinds of extracellular enzymes (${\beta}$-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease) also revealed apparent variation in the ability to produce extracellular enzymes among the 40 tested progeny strains from both parental A. bisporus strains. Overall, this study demonstrates that characterization of IGS I regions and extracellular enzymes is useful for the assessment of the substrate-degrading ability and heterogenicity of A. bisporus monokaryotic strains.

Effect of Dilute Alkali on Structural Features and Enzymatic Hydrolysis of Barley Straw (Hordeum vulgare) at Boiling Temperature with Low Residence Time

  • Haque, Md. Azizul;Barman, Dhirendra Nath;Kang, Tae Ho;Kim, Min Keun;Kim, Jungho;Kim, Hoon;Yun, Han Dae
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1681-1691
    • /
    • 2012
  • This work was conducted to evaluate the effect of dilute sodium hydroxide (NaOH) on barley straw at boiling temperature and fractionation of its biomass components into lignin, hemicellulose, and reducing sugars. To this end, various concentrations of NaOH (0.5% to 2%) were applied for pretreatment of barley straw at $105^{\circ}C$ for 10 min. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and Fourier transform infrared (FTIR) spectroscopy studies revealed that 2% NaOH-pretreated barley straw exposed cellulose fibers on which surface granules were abolished due to comprehensive removal of lignin and hemicellulose. The X-ray diffractometer (XRD) result showed that the crystalline index was increased with increased concentration of NaOH and found a maximum 71.5% for 2% NaOH-pretreated sample. The maximum removal of lignin and hemicellulose was 84.8% and 79.5% from 2% NaOH-pretreated liquor, respectively. Reducing sugar yield was 86.5% from 2% NaOH-pretreated sample using an enzyme dose containing 20 FPU of cellulase, 40 IU of ${\beta}$-glucosidase, and 4 FXU of xylanase/g substrate. The results of this study suggest that it is possible to produce the bioethanol precursor from barley straw using 2% NaOH at boiling temperature.

Effects of LCFA on the Gas Production, Cellulose Digestion and Cellulase Activities by the Rumen Anaerobic Fungus, Neocallimastix frontalis RE1

  • Lee, S.S.;Ha, J.K.;Cheng, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제14권8호
    • /
    • pp.1110-1117
    • /
    • 2001
  • Responses of the rumen fungus, Neocallimastix frontalis RE1, to long chain fatty acid (LCFA) were evaluated by measuring gas production, filter paper (FP) cellulose digestion and polysaccharidase enzyme activities. LCFA (stearic acid, $C_{18:0}$; oleic acid, $C_{18:1}$; linoleic acid, $C_{18:2}$ and linolenic acid, $C_{18:3}$) were emulsitied by ultrasonication under anaerobic condition, and added to the medium. When N frontalis RE1 was grown in culture with stearic, oleic and linoleic acid, the cumulative gas production, gas pool size, FP cellulose digestion and enzymes activities significantly (p<0.05) increased at some incubation times(especially, exponential phases of fungal growth, 48~120 h of incubation) relative to that for control cultures. However, the addition of linolenic acid strongly inhibited all of the investigated parameters up to 120 h incubation, but not after 168 and 216 h of incubation. These results indicated that stearic, oleic and linoleic acids tended to have great stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effects on the cellulolysis by the rumen fungus. These results are the first report of the effect of LCFAs on the ruminal fungi. Further research is needed to identify the mode of action of LCFAs on fungal strains and to verify whether or not ruminal fungi have ability to hydrate unsaturated LCFAs to saturated FAs. There was high correlation between cumulative in vitro gas production and fungal growth (94.78%), FP cellulose degradation (96.34%), CMCase activity(90.86%) or xylanase activity (87.67%). Thus measuring of cumulative gas production could be a useful tool for evaluating fungal growth and/or enzyme production by ruminal fungi.

Effects of Cordyceps militaris Mycelia on Fibrolytic Enzyme Activities and Microbial Populations In vitro

  • Yeo, Joon-Mo;Lee, Shin-Ja;Shin, Sung-Hwan;Lee, Sung-Hoon;Ha, Jong-Kyu;Kim, Wan-Young;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권3호
    • /
    • pp.364-368
    • /
    • 2011
  • An experiment was conducted to examine the effects of Cordyceps militaris mycelia on microbial populations and fibrolytic enzyme activities in vitro. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the supplementation of C. militaris mycelia linearly increased the number of total viable and celluloytic bacteria; maximum responses were seen with 0.25 g/L supplementation of C. militaris mycelia. The addition of C. militaris mycelia above the level of 0.20 g/L significantly (p<0.01) increased the number of total and cellulolytic bacteria compared with the control. On the other hand, the response of fungal counts to the supplementation of C. militaris mycelia showed a linear decrease; the lowest response was seen with 0.30 g/L supplementation of C. militaris mycelia. It would seem that C. militaris mycelia possess a strong negative effect on rumen fungi since the lowest level of C. militaris mycelia supplementation markedly decreased fungal counts. Carboxylmethyl cellulase activities were linearly increased by the addition of C. militaris mycelia except at 3 and 9 h incubation times. At all incubation times, the supplementation of C. militaris mycelia linearly increased the activities of xylanase and avicelase. In conclusion, the supplementation of C. militaris mycelia to the culture of mixed rumen microorganisms showed a positive effect on cellulolytic bacteria and cellulolytic enzyme activities but a negative effect on fungi.