• 제목/요약/키워드: cellular uptake

검색결과 273건 처리시간 0.022초

인삼 사포닌 분획이 세포벽에 미치는 영향 (A Study on The Effect of Ginseng Saponin Fraction on Cell Wall)

  • 조영동;김태우;최해길
    • Journal of Ginseng Research
    • /
    • 제5권1호
    • /
    • pp.65-72
    • /
    • 1981
  • In this experiment, observations were made on the effects of ginseng saponin, one of the major components of Korean ginseng (Panax ginseng, C. A. Meyer) root, on the membranes of microorganism (E. coli K-12), the concentration of intracelluar and extracellular cycle AMP therein, and uptake of U-14C-glucose. When the E. coli were grown on media containing 0.1% ginseng saponin, the growth was faster than for that of the control by about 30 minutes. The lysis of E. coli grown on the ginseng saponin medium increased to about double that of the control in the stationary phase. And the amount of protein and lipopolysaccharides in the outer cell meberances increased 25% and 80% respectively in comparison with the control. By electron microscope observation, it was shown that the periplasmic region of the E. coli grown on the ginseng saponin medium was widened it was observed that the cellular cyclic AMP content of the E. coli increased significantly to the hightest levels between the late exponential phase and early stationary phase. The total cyclic AMP content of E. coli grown on the ginseng saponin medium decreased about 50% when compared to that of the control.

  • PDF

Low Molecular Weight PEI Conjugated Pluronic Copolymer: Useful Additive for Enhancing Gene Transfection Efficiency

  • Cho Kyung-Chul;Choi Seung-Ho;Park Tae-Gwan
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.348-353
    • /
    • 2006
  • For enhancing the gene delivery efficiency of polyplexes, a new formulation was developed using PEI conjugated Pluronic F127 copolymer as an effective additive. Low molecular weight, branched polyethylenimine Mw 600 (LMW BPEI 600) was conjugated to the terminal end of Pluronic F127. The PEI-modified Pluronic copolymers formed a micellar structure in aqueous solution, similar to that of unmodified Pluronic copolymer. PEI modification of Pluronic copolymer increased the size of micelles while concomitantly raising the critical micelle concentration (CMC). The PEI-modified Pluronic copolymer was used as a micellar additive to enhance the gene transfection efficiency of pre-formulated polyelectrolyte complex nanoparticles composed of luciferase plasmid DNA and branched PEI Mw 25k (BPEI 25k) or polylysine Mw 39k (PLL 39k). The luciferase gene expression levels were significantly enhanced by the addition of the BPEI-modified Pluronic copolymer for the two formulations of BPEl and PLL polyplexes. The results indicated that the BPEI-modified Pluronic copolymer micelles ionically interacted on the surface of DNA/BPEI (PLL) polyplexes which might facilitate cellular uptake process.

인삼연구의 최근 발전과 경향 (Ginseng; Recent Advances and Trends)

  • Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제21권1호
    • /
    • pp.1-12
    • /
    • 1997
  • Ginseng, the root of Panax ginseng C.A. Meyer, is well-known oriental herbal medicine. The number of paper reporting the effects on its physiological, pharmacological, and behavioral effects has been increased every year, since ginsenosides isolated from ginseng are known to be biologically active components. This brief review summarizes some of new findings from recently published papers on ginsenosides or ginseng saponins. Therefore, this paper includes the various effects of ginsenosides on neuronal cell growths, on behavior of experimental animals, on enzyme activities, on the release and uptake of neurotransmitters, on neuronal cell excitability, on the motility of intestine, on antitumor activity, on cardiovascular system and metabolism. In spite of various effects of ginsenosides on various cells or organs, it is still to date impossible for one to clearly explain the exact mechanism on the action of ginsenosides. However, in this article I will discuss several papers providing possible explanations on the physiological and pharmacological actions including signal transudation pathway of ginsenosides. The elucidation of the exact mechanism of ginsenosides on cellular or molecular level will not only give us a chance to explain why people have used ginseng as an elixir of life for several thousands of year but also give us a crucial chance to apply ginseng to modern medicine.

  • PDF

Regulation of Apoptosis and Functional Activity in Bovine Mammary Acini

  • im, Sang Hoon
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.347-352
    • /
    • 2000
  • Programmed cell death, apoptosis, is a mechanism to maintain tissue homeostasis. Although the apoptotic process in rodent mammary tissues has been known to occur at the onset of involution, little is known about programmed cell death in the bovine tissues. Therefore, the purpose of this study was to investigate the molecular and cellular basis of apoptotic process in bovine mammary cells. Mammary tissues were obtained at different lactational and involurional stages. By apoptosis in situ endlabeling assay, apoptotic cells were found around the acinar celt lining in regressing bovine mammary tissues. The apoptosis-related genes bel-2 and bax were detected throughout involution by Northern blotting assay. The level of bax mRNA was dominantly expressed during involution. On the other hand, the bel-2 RNA transcripts were constantly expressed by 14 of post-lactation and declined thereafter. The expression of the testosterone-repressed prostate message-2 (TRPM-2) RNA transcripts, a marker for tissue remodeling, was increased as involution progressed. TNF a, were induced the DNA fragmentation and enhanced the expression of bax mRNA. In addition, milk protein secretion and amino acid uptake were decreased in mammary acinar culture treated with TNF $\alpha$. These results indicate that bovine mammary cells undergo apoptotic process after the cessation of milking and that TNF $\alpha$ may trigger apoptosis in lactating bovine mammary acini.

  • PDF

Green tea and type 2 diabetes

  • Park, Jae-Hyung;Bae, Jae-Hoon;Im, Sung-Soon;Song, Dae-Kyu
    • Integrative Medicine Research
    • /
    • 제3권1호
    • /
    • pp.4-10
    • /
    • 2014
  • Green tea and coffee consumption have been widely popular worldwide. These beverages contain caffeine to activate the central nervous system by adenosine receptor blockade, and due to the caffeine, addiction or tolerance may occur. In addition to this caffeine effect, green tea and coffee consumption have always been at the center of discussions about human health, disease, and longevity. In particular, green tea catechins are involved in many biological activities such as antioxidation and modulation of various cellular lipid and proteins. Thus, they are beneficial against degenerative diseases, including obesity, cancer, cardiovascular diseases, and various inflammatory diseases. Some reports also suggest that daily consumption of tea catechins may help in controlling type 2 diabetes. However, other studies have reported that chronic consumption of green tea may result in hepatic failure, neuronal damage, and exacerbation of diabetes, suggesting that interindividual variations in the green tea effect are large. This review will focus on the effect of green tea catechins extracted from the Camellia sinensis plant on type 2 diabetes and obesity, and the possible mechanistic explanation for the experimental results mainly from our laboratory. It is hoped that green tea can be consumed in a suitable manner as a supplement to prevent the development of type 2 diabetes and obesity.

Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content

  • Berger, Jean-Mathieu;Moon, Young-Ah
    • Molecules and Cells
    • /
    • 제44권2호
    • /
    • pp.116-125
    • /
    • 2021
  • Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.

Enzymatic Synthesis of Resveratrol α-Glucoside by Amylosucrase of Deinococcus geothermalis

  • Moon, Keumok;Lee, Seola;Park, Hyunsu;Cha, Jaeho
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권12호
    • /
    • pp.1692-1700
    • /
    • 2021
  • Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.

Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions

  • Lee, Jongchan;Choi, Junhyeok;Lee, Jeongwook;Cho, Yongmin;Kang, In-Jeong;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.410-416
    • /
    • 2022
  • Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

Agglutination Activity of Fasciola gigantica DM9-1, a Mannose-Binding Lectin

  • Phadungsil, Wansika;Grams, Rudi
    • Parasites, Hosts and Diseases
    • /
    • 제59권2호
    • /
    • pp.173-178
    • /
    • 2021
  • The DM9 domain is a protein unit of 60-75 amino acids that has been first detected in the fruit fly Drosophila as a repeated motif of unknown function. Recent research on proteins carrying DM9 domains in the mosquito Anopheles gambiae and the oyster Crassostrea gigas indicated an association with the uptake of microbial organisms. Likewise, in the trematode Fasciola gigantica DM9-1 showed intracellular relocalization following microbial, heat and drug stress. In the present research, we show that FgDM9-1 is a lectin with a novel mannose-binding site that has been recently described for the protein CGL1 of Crassostrea gigas. This property allowed FgDM9-1 to agglutinate gram-positive and -negative bacteria with appropriate cell surface glycosylation patterns. Furthermore, FgDM9-1 caused hemagglutination across all ABO blood group phenotypes. It is speculated that the parenchymal located FgDM9-1 has a role in cellular processes that involve the transport of mannose-carrying molecules in the parenchymal cells of the parasite.

Portulaca oleracea Seed Oil Exerts Cytotoxic Effects on Human Liver Cancer (HepG2) and Human Lung Cancer (A-549) Cell Lines

  • Al-Sheddi, Ebtesam Saad;Farshori, Nida Nayyar;Al-Oqail, Mai Mohammad;Musarrat, Javed;Al-Khedhairy, Abdulaziz Ali;Siddiqui, Maqsood Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3383-3387
    • /
    • 2015
  • Portulaca oleracea (Family: Portulacaceae), is well known for its anti-inflammatory, antioxidative, anti-bacterial, and anti-tumor activities. However, cytotoxic effects of seed oil of Portulaca oleracea against human liver cancer (HepG2) and human lung cancer (A-549) cell lines have not been studied previously. Therefore, the present study was designed to investigate the cytotoxic effects of Portulaca oleracea seed oil on HepG2 and A-549 cell lines. Both cell lines were exposed to various concentrations of Portulaca oleracea seed oil for 24h. After the exposure, percentage cell viability was studied by (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT), neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed a concentration-dependent significant reduction in the percentage cell viability and an alteration in the cellular morphology of HepG2 and A-549 cells. The percentage cell viability was recorded as 73%, 63%, and 54% by MTT assay and 76%, 61%, and 50% by NRU assay at 250, 500, and $1000{\mu}g/ml$, respectively in HepG2 cells. Percentage cell viability was recorded as 82%, 72%, and 64% by MTT assay and 83%, 68%, and 56% by NRU assay at 250, 500, and $1000{\mu}g/ml$, respectively in A-549 cells. The 100 $100{\mu}g/ml$ and lower concentrations were found to be non cytotoxic to A-549 cells, whereas decrease of 14% and 12% were recorded by MTT and NRU assay, respectively in HepG2 cells. Both HepG2 and A-549 cell lines exposed to 250, 500, and $1000{\mu}g/ml$ of Portulaca oleracea seed oil lost their normal morphology, cell adhesion capacity, become rounded, and appeared smaller in size. The data from this study showed that exposure to seed oil of Portulaca oleracea resulted in significant cytotoxicity and inhibition of growth of the human liver cancer (HepG2) and human lung cancer (A-549) cell lines.