Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2147

Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content  

Berger, Jean-Mathieu (Departments of Internal Medicine and Molecular Genetics, University of Texas Southwestern Medical Center)
Moon, Young-Ah (Department of Molecular Medicine, Inha University College of Medicine)
Abstract
Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.
Keywords
cholesterol; dyslipidemia; fatty liver; lipogenesis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sanders, F.W.B., Acharjee, A., Walker, C., Marney, L., Roberts, L.D., Imamura, F., Jenkins, B., Case, J., Ray, S., Virtue, S., et al. (2018). Hepatic steatosis risk is partly driven by increased de novo lipogenesis following carbohydrate consumption. Genome Biol. 19, 79.   DOI
2 Semenkovich, C.F. (2006). Insulin resistance and atherosclerosis. J. Clin. Invest. 116, 1813-1822.   DOI
3 Shimano, H., Horton, J.D., Hammer, R.E., Shimomura, I., Brown, M.S., and Goldstein, J.L. (1996). Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP1a. J. Clin. Invest. 98, 1575-1584.   DOI
4 Shimomura, I., Shimano, H., Korn, B.S., Bashmakov, Y., and Horton, J.D. (1998). Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J. Biol. Chem. 273, 35299-35306.   DOI
5 Sukonina, V., Lookene, A., Olivecrona, T., and Olivecrona, G. (2006). Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. Proc. Natl. Acad. Sci. U. S. A. 103, 17450-17455.   DOI
6 Targher, G., Day, C.P., and Bonora, E. (2010). Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N. Engl. J. Med. 363, 1341-1350.   DOI
7 Turley, S.D., Daggy, B.P., and Dietschy, J.M. (1996). Effect of feeding psyllium and cholestyramine in combination on low density lipoprotein metabolism and fecal bile acid excretion in hamsters with dietary-induced hypercholesterolemia. J. Cardiovasc. Pharmacol. 27, 71-79.   DOI
8 Weigand, W., Hannappel, E., and Brand, K. (1980). Effect of starvation and refeeding a high-protein or high-carbohydrate diet on lipid composition and glycogen content of rat livers in relation to age. J. Nutr. 110, 669-674.   DOI
9 Xie, C., Woollett, L.A., Turley, S.D., and Dietschy, J.M. (2002). Fatty acids differentially regulate hepatic cholesteryl ester formation and incorporation into lipoproteins in the liver of the mouse. J. Lipid Res. 43, 1508-1519.   DOI
10 Acton, S., Rigotti, A., Landschulz, K.T., Xu, S., Hobbs, H.H., and Krieger, M. (1996). Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 271, 518-520.   DOI
11 Angulo, P. (2002). Nonalcoholic fatty liver disease. N. Engl. J. Med. 346, 1221-1231.   DOI
12 Anstee, Q.M., Targher, G., and Day, C.P. (2013). Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 10, 330-344.   DOI
13 Browning, J.D., Szczepaniak, L.S., Dobbins, R., Nuremberg, P., Horton, J.D., Cohen, J.C., Grundy, S.M., and Hobbs, H.H. (2004). Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 40, 1387-1395.   DOI
14 Brundert, M., Heeren, J., Merkel, M., Carambia, A., Herkel, J., Groitl, P., Dobner, T., Ramakrishnan, R., Moore, K.J., and Rinninger, F. (2011). Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J. Lipid Res. 52, 745-758.   DOI
15 Chatrath, H., Vuppalanchi, R., and Chalasani, N. (2012). Dyslipidemia in patients with nonalcoholic fatty liver disease. Semin. Liver Dis. 32, 22-29.   DOI
16 Chong, M.F.F., Fielding, B.A., and Frayn, K.N. (2007). Metabolic interaction of dietary sugars and plasma lipids with a focus on mechanisms and de novo lipogenesis. Proc. Nutr. Soc. 66, 52-59.   DOI
17 Cohen, D.E. and Fisher, E.A. (2013). Lipoprotein metabolism, dyslipidemia, and nonalcoholic fatty liver disease. Semin. Liver Dis. 33, 380-388.   DOI
18 DeBose-Boyd, R.A. (2008). Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res. 18, 609-621.   DOI
19 Cohen, J.C., Horton, J.D., and Hobbs, H.H. (2011). Human fatty liver disease: old questions and new insights. Science 332, 1519-1523.   DOI
20 Connelly, M.A. and Williams, D.L. (2004). Scavenger receptor BI: a scavenger receptor with a mission to transport high density lipoprotein lipids. Curr. Opin. Lipidol. 15, 287-295.   DOI
21 Donnelly, K.L., Smith, C.I., Schwarzenberg, S.J., Jessurun, J., Boldt, M.D., and Parks, E.J. (2005). Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Invest. 115, 1343-1351.   DOI
22 Endemann, G., Stanton, L.W., Madden, K.S., Bryant, C.M., White, R.T., and Protter, A.A. (1993). CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 268, 11811-11816.   DOI
23 Engelking, L.J., Kuriyama, H., Hammer, R.E., Horton, J.D., Brown, M.S., Goldstein, J.L., and Liang, G. (2004). Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulinstimulated lipogenesis. J. Clin. Invest. 113, 1168-1175.   DOI
24 Febbraio, M. and Silverstein, R.L. (2007). CD36: implications in cardiovascular disease. Int. J. Biochem. Cell Biol. 39, 2012-2030.   DOI
25 Gerloff, T., Stieger, B., Hagenbuch, B., Madon, J., Landmann, L., Roth, J., Hofmann, A.F., and Meier, P.J. (1998). The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J. Biol. Chem. 273, 10046-10050.   DOI
26 Horton, J.D., Shah, N.A., Warrington, J.A., Anderson, N.N., Park, S.W., Brown, M.S., and Goldstein, J.L. (2003). Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc. Natl. Acad. Sci. U. S. A. 100, 12027-12032.   DOI
27 Goldstein, J.L., Basu, S.K., and Brown, M.S. (1983). Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 98, 241-260.   DOI
28 Hellerstein, M.K. and Parks, E.J. (2000). Carbohydrate-induced hypertriacylglycerolemia: historical perspective and review of biological mechanisms. Am. J. Clin. Nutr. 71, 412-433.   DOI
29 Horton, J.D., Cohen, J.C., and Hobbs, H.H. (2009). PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50 Suppl, S172-S177.   DOI
30 Horton, J.D., Goldstein, J.L., and Brown, M.S. (2002). SREBPs:activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109, 1125-1131.   DOI
31 Horton, J.D., Shimano, H., Hamilton, R.L., Brown, M.S., and Goldstein, J.L. (1999). Disruption of LDL receptor gene in transgenic SREBP-1a mice unmasks hyperlipidemia resulting from production of lipid-rich VLDL. J. Clin. Invest. 103, 1067-1076.   DOI
32 Horton, J.D. and Shimomura, I. (1999). SREBPs: activators of cholesterol and fatty acid biosynthesis. Curr. Opin. Lipidol. 10, 143-150.   DOI
33 Howard, B.V. (1987). Lipoprotein metabolism in diabetes mellitus. J. Lipid Res. 28, 613-628.   DOI
34 Johnson, B.M. and DeBose-Boyd, R.A. (2018). Underlying mechanisms for sterol-induced ubiquitination and ER-associated degradation of HMGCoA reductase. Semin. Cell Dev. Biol. 81, 121-128.   DOI
35 Hudgins, L.C., Hellerstein, M., Seidman, C., Neese, R., Diakun, J., and Hirsch, J. (1996). Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J. Clin. Invest. 97, 2081-2091.   DOI
36 Ikonen, E. (2008). Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125-138.   DOI
37 Iritani, N., Nishimoto, N., Katsurada, A., and Fukuda, H. (1992). Regulation of hepatic lipogenic enzyme gene expression by diet quantity in rats fed a fat-free, high carbohydrate diet. J. Nutr. 122, 28-36.   DOI
38 Kim, T.S. and Freake, H.C. (1996). High carbohydrate diet and starvation regulate lipogenic mRNA in rats in a tissue-specific manner. J. Nutr. 126, 611-617.   DOI
39 Kim, C.W., Addy, C., Kusunoki, J., Anderson, N.N., Deja, S., Fu, X., Burgess, S.C., Li, C., Ruddy, M., Chakravarthy, M., et al. (2017). Acetyl-CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab. 26, 394-406.e396.   DOI
40 Kim, M.J., Choi, W.G., Ahn, K.J., Chae, I.G., Yu, R., and Back, S.H. (2020). Reduced EGFR level in eIF2 phosphorylation-deficient hepatocytes is responsible for susceptibility to oxidative stress. Mol. Cells 43, 264-275.   DOI
41 Lambert, J.E., Ramos-Roman, M.A., Browning, J.D., and Parks, E.J. (2014). Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726-735.   DOI
42 Moon, Y.A., Hammer, R.E., and Horton, J.D. (2009). Deletion of ELOVL5 leads to fatty liver through activation of SREBP-1c in mice. J. Lipid Res. 50, 412-423.   DOI
43 Makadia, S.S., Blaha, M., Keenan, T., Ndumele, C., Jones, S., DeFilippis, A., Martin, S., Kohli, P., Conceicao, R., Carvalho, J., et al. (2013). Relation of hepatic steatosis to atherogenic dyslipidemia. Am. J. Cardiol. 112, 1599-1604.   DOI
44 Matsuda, M., Korn, B.S., Hammer, R.E., Moon, Y.A., Komuro, R., Horton, J.D., Goldstein, J.L., Brown, M.S., and Shimomura, I. (2001). SREBP cleavageactivating protein (SCAP) is required for increased lipid synthesis in liver induced by cholesterol deprivation and insulin elevation. Genes Dev. 15, 1206-1216.   DOI
45 May, C.L., Berger, J.M., Lespine, A., Pillot, B., Prieur, X., Letessier, E., Hussain, M.M., Collet, X., Cariou, B., and Costet, P. (2013). Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1. Arterioscler. Thromb. Vasc. Biol. 33, 1484-1493.   DOI
46 Rong, S., Cortes, V.A., Rashid, S., Anderson, N.N., McDonald, J.G., Liang, G., Moon, Y.A., Hammer, R.E., and Horton, J.D. (2017). Expression of SREBP-1c requires SREBP-2-mediated generation of a sterol ligand for LXR in livers of mice. eLife 6, e25015.   DOI
47 Moon, Y.A., Liang, G., Xie, X., Frank-Kamenetsky, M., Fitzgerald, K., Koteliansky, V., Brown, M.S., Goldstein, J.L., and Horton, J.D. (2012). The Scap/SREBP pathway is essential for developing diabetic fatty liver and carbohydrate-induced hypertriglyceridemia in animals. Cell Metab. 15, 240-246.   DOI
48 Moon, Y.A., Ochoa, C.R., Mitsche, M.A., Hammer, R.E., and Horton, J.D. (2014). Deletion of ELOVL6 blocks the synthesis of oleic acid but does not prevent the development of fatty liver or insulin resistance. J. Lipid Res. 55, 2597-2605.   DOI
49 Okazaki, H., Goldstein, J.L., Brown, M.S., and Liang, G. (2010). LXR-SREBP1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J. Biol. Chem. 285, 6801-6810.   DOI
50 Yao, Z. and Wang, Y. (2012). Apolipoprotein C-III and hepatic triglyceriderich lipoprotein production. Curr. Opin. Lipidol. 23, 206-212.   DOI
51 Yazdanyar, A. and Jiang, X.C. (2012). Liver phospholipid transfer protein (PLTP) expression with a PLTP-null background promotes very low-density lipoprotein production in mice. Hepatology 56, 576-584.   DOI
52 Ye, J., Li, J.Z., Liu, Y., Li, X., Yang, T., Ma, X., Li, Q., Yao, Z., and Li, P. (2009). Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab. 9, 177-190.   DOI
53 Zhang, R. (2012). Lipasin, a novel nutritionally-regulated liver-enriched factor that regulates serum triglyceride levels. Biochem. Biophys. Res. Commun. 424, 786-792.   DOI
54 Yu, L., Hammer, R.E., Li-Hawkins, J., von Bergmann, K., Lutjohann, D., Cohen, J.C., and Hobbs, H.H. (2002). Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion. Proc. Natl. Acad. Sci. U. S. A. 99, 16237-16242.   DOI
55 Zhang, J., Zamani, M., Thiele, C., Taher, J., Alipour, M.A., Yao, Z., and Adeli, K. (2017). AUP1 (ancient ubiquitous protein 1) is a key determinant of hepatic very-low density lipoprotein assembly and secretion. Arterioscler. Thromb. Vasc. Biol. 37, 633-642.   DOI