• Title/Summary/Keyword: cellular protective effect

Search Result 341, Processing Time 0.025 seconds

Protective Effect of Yellow-Green Vegetable Juices on DNA Damage in Chinese Hamster Lung Cell Using Comet Assay (Comet Assay를 이용한 케일, 명일엽, 당근, 돌미나리 녹즙의 Chinese Hamster Lung 세포 DNA 손상 보호 효과)

  • 전은재;김정신;박유경;김태석;강명희
    • Journal of Nutrition and Health
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2003
  • The present study was attempted to investigate the antioxidant capacity of popular yellow-green vegetable juices (kale, Angelica keishei, carrot, small water dropwort) and to investigate the effect of vegetable juices on protecting oxidative damage to DNA in cultured Chinese hamster lung (CHL) cells. Antioxidant capacity was analyzed by TRAP assay (Total radical-trapping antioxidant potential). Cellular DNA dmamage was measured by SCGE (single-cell gel electrophoresis, also known as comet assay. Cells incubated in medium with PBS (negative control) or with various concentration of the freeze dried green juices (25, 50, 100, 250 $\mu\textrm{g}$/$m\ell$) resuspended in PBS were treated with $H_2O_2$ (200 ${\mu}{\textrm}{m}$) as an oxidative stimulus for 5 min at 4$^{\circ}C$. The physiological function of each vegetable juice on oxidative DNA damage was analyzed and expressed as tail moment (tail length X percentage migrated DNA in tail) . Kale juice had the highest TRAP value suggesting that kale has the highest antioxidant capacity followed by Angelica keishei, small water dropwort and carrot. Cells treated with $H_2O_2$ had extensive DNA damage compared with cells treated with PBS or pre-treated with vegetable juice extracts. All green juices inhibited $H_2O_2$-induced DNA damage with kale being the most effective juice among the tested juices. These results indicate that green juice supplementation to CHL cells followed by oxidative stimulus inhibited damage to cellular DNA, supporting a protective effect against oxidative damage induced by reactive oxygen species. (Korean J Nutrition 36(1) : 24-31, 2003)

Antioxidative Activity of Securinega suffruticosa Extract (광대싸리 줄기 추출물의 항산화 활성)

  • Park, Soo-Nam;Kim, Jai-Hyun;Ahn, You-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.269-278
    • /
    • 2009
  • In this study, the anti oxidative effects, inhibitory effects on elastase, and components of Securinega suffruticosa extracts were investigated. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) and reactive oxygen species ROS) scavenging activities ($OSC_{50}$) of extract/fractions from Securinega suffruticosa were measured. The aglycone fraction ($9.04\;{\pm}\;0.51\;{\mu}g/mL$) and 50 % ethanol extract ($1.05\;{\pm}\;0.41\;{\mu}g/mL$) showed the most effective scavenging activities. The protective effects on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The aglycone fraction exhibited the most prominent cellular protective effect (${\tau}_{50},\;102.77\;{\pm}\;5.37$ min at $10{\mu}g/mL$). The inhibitory effect of ethyl acetate fraction on tyrosinase were of examined ($210.0\;{\pm}\;1.02\;{\mu}g/mL$). The inhibitory effect of aglycone fraction on elastase were also investigated ($17.6\;{\pm}\;1.26\;{\mu}g/mL$). These results indicate that extract/fractions of Securinega suffruticosa can function as antioxidants in biological systems, particularly skin exposed to UV radiation by scavenging $^1O_2$ and other ROS, and protect cellular membranes against ROS. Securinega suffruticosa extract could be used as a new cosmeceutical ingredient for whitening and anti-wrinkle products.

Antioxidant and Cellular Protective Effects against Oxidative Stress of Calendula officinalis Flowers Extracts in Human Skin Cells (사람피부세포에서 카렌둘라 꽃 추출물의 항산화 및 산화적 스트레스에 대한 세포보호효과)

  • Xuan, Song Hua;Kim, Ga Yoon;Yu, Ji Yeon;Kim, Jee Won;Yang, Ye Rim;Jeon, Young Hee;Jeong, Yoon Ju;Kim, A Rang;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.620-626
    • /
    • 2016
  • In this study, we investigated the total phenolic and flavonoid contents, antioxidant activity and cellular protective effects against oxidative stress on human skin cells in 50% ethanol extract and its fractions of Calendula officinalis (C. officinalis) flowers. We measured the antioxidant effects of 50% ethanol extract and its fractions of C. officinalis flowers on the free radical scavenging activity ($FSC_{50}$), the reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) and the inhibition of intracellular ROS generation in human skin cells. These results showed that the antioxidant effect of the ethyl acetate and aglycone fraction was more than the 50% ethanol extract of C. officinalis flowers. We also investigated the cellular protective activity and the results showed that treatment of the ethyl acetate fraction ($0.05-3.13{\mu}g/mL$) protects human skin cells in a concentration-dependent manner when the skin cell damages were induced by treating them with $H_2O_2$. In addition, the aglycone fraction ($1.56-3.13{\mu}g/mL$) shows cellular protective effects on the UV-induced cell damages in a dose-dependent manner. These results suggest that the fractions of C. officinalis flowers can function as a natural antioxidant agent of cosmetics in human skin cells exposed to oxidative stress by ROS scavenging effects.

Protective Effects of Acanthoic acid on Tertiary-Butyl Hydroperoxide or Carbon tetrachloride-Induced Liver Injury

  • Park, Eun-Jeon;Nan, Ji-Xing;Zhao, Yu-Zhe;Lee, Sung-Hee;Kim, Young-Ho;Nam, Jeong-Bum;Lee, Jung-Joon;Sohn, Dong-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.298.1-298.1
    • /
    • 2003
  • The aim of this study was to investigate the protective effect of acanthoic acid on liver injury induced by either tertiary-butyl hydroperoxide (tBH) or carbon tetrachloride in vitro and in vivo. Acanthoic acid, (-)-pimara-9(11),15-diene-19-oic acid, is a diterpene isolated from the root bark of Acanthopanax koreanum. In in vitro study, the cellular leakage of lactate dehydrogenase (LDH) with 1.5 mM tBH for 1 j, were significantly inhibited by treatment with acanthoic acid(25 and 5mg/mL). (omitted)

  • PDF

Protective effect of Cirsium japonicum var. maackii against oxidative stress in C6 glial cells

  • Lee, Ah Young;Kim, Min Jeong;Lee, Sanghyun;Shim, Jae Suk;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.509-519
    • /
    • 2018
  • This study was investigated the anti-oxidant property and neuro-protective effect of Cirsium japonicum var. maackii (CJM) against oxidative stress in hydrogen peroxide ($H_2O_2$)-induced C6 glial cells. We measured the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical (${\cdot}OH$), and superoxide ($O_2{^-}$) radical scavenging activities of an ethanol extract and four fractions [n-Butanol, ethyl acetate (EtOAc), $CHCl_3$, and n-Hexane] from CJM. The results of this study show that the extract and all fractions from CJM had a dose-dependent DPPH radical scavenging activity. In particular, the EtOAc fraction exhibited the strongest scavenging effect with 88.23% at a concentration of $500{\mu}g/mL$. In addition, the EtOAc fraction from CJM also effectively scavenged ${\cdot}OH$ radicals and $O_2{^-}$ radicals, compared to other extract and fractions. In C6 glial cells, $H_2O_2$ markedly decreased the cell viability as well as increased lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. However, the EtOAc fraction of CJM attenuated the cellular damage from the oxidative stress by elevating the cell viability and inhibiting the LDH release and ROS over-production compared with the $H_2O_2$-treated control group. Our findings indicate that the EtOAc fraction from CJM has antioxidant effect and neuro-protective effect against oxidative stress, suggesting that it can be used as a natural antioxidant and therapeutic agent for the prevention of neurodegenerative disorders.

Protective effect of Salviae-radix extraction in $H_2O_2$ induced renal cell injury ($H_2O_2$에 의한 신장(腎臟) 세포 손상에 대한 단삼(丹參) 추출물의 방지 효과)

  • Kim, Sang-Beum;Jeong, Ji-Cheon
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.38-48
    • /
    • 1998
  • This study was undertaken to determine whether Salviae-radix (SVR) extraction prevents the oxidant-induced cell injury and thereby exerts protective effect against oxidant-induced inhibition of tetraethylammonium uptake (TEA) in renal corticaJ sices. SVR (5%) attenuated $H_2O_2-induced$ inhibition of TEA uptake. $H_2O_2$ increased LDH release and lipid peroxidation in a dose-dependent manner. These changes were prevented by SVR extraction. The protective effect of SVR on LDH release was dose-dependent over the concentration range of 0.1-0.5%, and that on lipid peroxidation over the concentration ranges of 0.05-2%. SVR significantly prevented Hg-induced lipid peroxidation. SVR extraction (0.5%) increased cellular GSH content in normal and $H_2O_2-treated$ tissues. When slices were treated with 100 mM $H_2O_2$, catalase activity was decreased, which was prevented by 0.5% SVR extraction. The activity of glutathione peroxidase but not superoxide dismutase was significantly increased by 0.5% SVR extraction in $H_2O_2-treated$ tissuces. These results suggest that SVR has an antioxidant action and thereby exerts benefical effect against oxidant-induced impairment of membrane transport function. This effect of SVR is attributed to an increase in endogenous antioxidants such as GSH, catalase and glutathione peroxidase.

  • PDF

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

Experimental research for the protective effect of Naoxingtong-containing serum on rat cerebral microvascular endothelial cells

  • Jun, Zhou;Jianyou, Guo;Jian, Guo;Lanfang, Li;Canghai, Li;Nan, Jiang;Shuying, Guo;Hairu, Huo;JiangTingliang, JiangTingliang
    • Advances in Traditional Medicine
    • /
    • v.5 no.2
    • /
    • pp.156-159
    • /
    • 2005
  • The protective effect of Naoxingtong (NXT) on rat cerebral microvascular endothelial cell (rCMEC) was investigated. rCMEC was injured in vitro by incubating for 4 hours at 100% NO in a hypoxia chamber. After treated with NXT-containing serum, the cellular viability rate (90.3%) was significantly elevated when compared with that of control group and the inhibitive rate of lactic dehydrogenase activity (9.2%) was far lower than the control group with dose-dependent effect. The results indicate that NXT can increase viability of rCMEC, and protect cell membrane from injury during hypoxia.

Study on the Protective Effect of Corni Fructus Against Free Radical Mediated Liver Damage (산수유의 유리자유기에 의한 간손상 보호효과 및 기전에 대한 연구)

  • Ha, Ki-Tae;Kim, Young-Mi;Kim, Cheorl-Ho;Choi, Dall-Yeong;Kim, June-Ki
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.82-88
    • /
    • 2008
  • We evaluated the potential protective activity of the traditional Korean medicinal herb, Corni fructus (CF), in an experimental model of hepatotoxicity induced by carbontetrachloride $(CCl_4)$. The CF exhibited a hepatoprotective activity against Chang cell. And The expression of cytochrome P450 2E1 (CYP2E1), measured by RT-PCR and western blot, was significantly decreased in the CF treated Chang cell. But $CCl_4$ and CF has no significant effect on 1A1 and 3A1 isoform of cytochrome P450. Based on these findings, it is suggested that hepatoprotective effects of CF possibly related to antioxidative effects and downregulation of CYP2E1 expression.

Antioxidative Activities of Whole Plant Extracts of Solanum nigrum L. (까마중(Solanum nigrum L.) 전초 추출물의 항산화 활성)

  • Seong, Joon Seob;Kim, Kyoung Mi;Suh, Ji Young;Ha, Ji Hoon;Park, Soo Nam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.781-788
    • /
    • 2015
  • In this study, the antioxidative effects of 50% ethanol extract, ethylacetate fraction and aglycone fraction obtained from dried whole plant of Solanum nigrum L. were investigated. The free radical scavenging activities ($FSC_{50}$) were $215.46{\mu}g/mL$, $42.43{\mu}g/mL$ and $52.28{\mu}g/mL$, respectively. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system were $25.25{\mu}g/mL$, $7.05{\mu}g/mL$ and $6.25{\mu}g/mL$, respectively. 50% ethanol extract and aglycone fraction showed the cellular protective effect against $^1O_2$ induced cellular damage of rabbit erythrocytes at $5{\sim}25{\mu}g/mL$, but not at high concentrations. These results indicated that S. nigrum extract/fractions could be used as an antioxidative agent. However, it could induce cellular damage at high concentrations. In conclusion, a special caution is required to use S. nigrum extracts as a cosmetic ingredient.