Browse > Article
http://dx.doi.org/10.14478/ace.2016.1093

Antioxidant and Cellular Protective Effects against Oxidative Stress of Calendula officinalis Flowers Extracts in Human Skin Cells  

Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
Kim, Ga Yoon (Hansung Science High School)
Yu, Ji Yeon (Hansung Science High School)
Kim, Jee Won (Hansung Science High School)
Yang, Ye Rim (Hansung Science High School)
Jeon, Young Hee (Hansung Science High School)
Jeong, Yoon Ju (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
Kim, A Rang (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
Publication Information
Applied Chemistry for Engineering / v.27, no.6, 2016 , pp. 620-626 More about this Journal
Abstract
In this study, we investigated the total phenolic and flavonoid contents, antioxidant activity and cellular protective effects against oxidative stress on human skin cells in 50% ethanol extract and its fractions of Calendula officinalis (C. officinalis) flowers. We measured the antioxidant effects of 50% ethanol extract and its fractions of C. officinalis flowers on the free radical scavenging activity ($FSC_{50}$), the reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) and the inhibition of intracellular ROS generation in human skin cells. These results showed that the antioxidant effect of the ethyl acetate and aglycone fraction was more than the 50% ethanol extract of C. officinalis flowers. We also investigated the cellular protective activity and the results showed that treatment of the ethyl acetate fraction ($0.05-3.13{\mu}g/mL$) protects human skin cells in a concentration-dependent manner when the skin cell damages were induced by treating them with $H_2O_2$. In addition, the aglycone fraction ($1.56-3.13{\mu}g/mL$) shows cellular protective effects on the UV-induced cell damages in a dose-dependent manner. These results suggest that the fractions of C. officinalis flowers can function as a natural antioxidant agent of cosmetics in human skin cells exposed to oxidative stress by ROS scavenging effects.
Keywords
Calendula officinalis; antioxidant; reactive oxygen species; cellular protective effect;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Y. M. Fonseca, C. D. Catini, F. T. Vicentini, A. Nomizo, R. F. Gerlach, and M. J. Fonseca, Protective effect of Calendula officinalis extract against UVB-induced oxidative stress in skin: Evaluation of reduced glutathione levels and matrix metalloproteinase secretion, J. Ethnopharmacol., 127, 596-601 (2010).   DOI
2 T. A. Re, D. Mooney, E. Antignac, E. Dufour, I. Bark, V. Srinivasan, and G. Nohynek, Application of the threshold of toxicological concern approach for the safety evaluation of calendula flower (Calendula officinalis) petals and extracts used in cosmetic and personal care products, Food Chem. Toxicol., 47, 1246-1254 (2009).   DOI
3 P. K. Chandran and R. Kuttan, Effect of Calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns, J. Clin. Biochem. Nutr., 43, 58-64 (2008).   DOI
4 E. Jimenez-Medina, A. Garcia-Lora, L. Paco, I. Algarra, A. Collado, and F. Garrido, A new extract of the plant Calendula officinalis produces a dual in vitro effect: Cytotoxic anti-tumor activity and lymphocyte activation, BMC Cancer, 6, 119 (2006).   DOI
5 K. Zitterl-Eglseer, S. Sosa, J. Jurenitsch, M. Schubert-Zsilavecz, R. Della Loggia, A. Tubaro, M. Bertoldi, and C. Franz, Anti-oedematous activities of the main triterpendiol esters of marigold (Calendula officinalis L.), J. Ethnopharmacol., 57, 139-144 (1997).   DOI
6 R. C. Alves, A. S. G. Costa, M. Jerez, S. Casal, J. Sineiro, M. J. Nunez, and B. Oliveira, Antiradical activity, phenolics profile, and hydroxymethylfurfural in espresso coffee: Influence of technological factors, J. Agric. Food Chem., 58, 12221-12229 (2010).   DOI
7 M. F. Barroso, J. P. Noronha, C. Delerue-Matos, and M. B. Oliveira, Flavored waters: Influence of ingredients on antioxidant capacity and terpenoid profile by HS-SPME/GC-MS, J. Agric. Food Chem., 59, 5062-5072 (2011).   DOI
8 A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015).   DOI
9 M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. J. Ma, A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B, 63, 41-51 (2001).   DOI
10 S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects. J. Ind. Eng. Chem., 20, 3046-3052 (2014).   DOI
11 M. Kim, Y. G. Park, H. J. Lee, S. J. Lim, and C. W. Nho, Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-kappaB and activation of AMPK/Nrf2 in HaCaT Cells and human dermal fibroblasts, J. Agric. Food Chem., 63, 5428-5438 (2015).   DOI
12 S. W. Shin, E. Jung, S. Kim, J. H. Kim, E. G. Kim, J. Lee, and D. Park, Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage, PLoS One, 8, e61971 (2013).   DOI
13 J. M. Silvan, M. Reguero, and S. de Pascual-Teresa, A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells, Food Funct., 7, 1067-1076 (2016).   DOI
14 T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55-63 (1983).   DOI
15 C. A. Rice-Evans, N. J. Miller, and G. Paganga, Structure-antioxidant activity relationships of flavonoids and phenolic acids, Free Radic. Biol. Med., 20, 933-956 (1996).   DOI
16 L. Packer, Ultraviolet radiation(UVA,UVB) and skin antioxidants, New Compr. Biochem., 28, 239-255 (1994).   DOI
17 J. Wohlrab, K. Hilpert, and L. Wolff, Epidermal aging and anti-aging strategies, Hautarzt, 67, 107-111 (2016).   DOI
18 D. Bernhard, C. Moser, A. Backovic, and G. Wick, Cigarette smoke - an aging accelerator?, Exp. Gerontol., 42, 160-165 (2007).   DOI
19 S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Sci. Korea, 23, 75-132 (1997).
20 Y. Al-Nuaimi, M. J. Sherratt, and C. E. Griffiths, Skin health in older age, Maturitas, 79, 256-264 (2014).   DOI
21 S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680 (2012).   DOI
22 J. H. Ha, Y. J. Jeong, J. S. Seong, K. M. Kim, A Young Kim, M. M. Fu, J. Y. Suh, N. H. Lee, J. Park, and S. N. Park, Antioxidant and antibacterial activities of Glycyrrhiza uralensis Fisher (Jecheon, Korea) extracts obtained by various extract conditions, J. Soc. Cosmet. Sci. Korea, 41, 361-373 (2015).
23 J. S. Seong, K. M. Kim, J. Y. Suh, J. H. Ha, and S. N. Park, Antioxidative activities of whole plant extracts of Solanum nigrum L., J. Korean Oil Chem. Soc., 32, 781-788 (2015).   DOI