DOI QR코드

DOI QR Code

Antioxidative Activities of Whole Plant Extracts of Solanum nigrum L.

까마중(Solanum nigrum L.) 전초 추출물의 항산화 활성

  • Seong, Joon Seob (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kim, Kyoung Mi (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Suh, Ji Young (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Ha, Ji Hoon (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 성준섭 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 김경미 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 서지영 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 하지훈 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2015.11.25
  • Accepted : 2015.12.14
  • Published : 2015.12.30

Abstract

In this study, the antioxidative effects of 50% ethanol extract, ethylacetate fraction and aglycone fraction obtained from dried whole plant of Solanum nigrum L. were investigated. The free radical scavenging activities ($FSC_{50}$) were $215.46{\mu}g/mL$, $42.43{\mu}g/mL$ and $52.28{\mu}g/mL$, respectively. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) in $Fe^{3+}-EDTA/H_2O_2$ system were $25.25{\mu}g/mL$, $7.05{\mu}g/mL$ and $6.25{\mu}g/mL$, respectively. 50% ethanol extract and aglycone fraction showed the cellular protective effect against $^1O_2$ induced cellular damage of rabbit erythrocytes at $5{\sim}25{\mu}g/mL$, but not at high concentrations. These results indicated that S. nigrum extract/fractions could be used as an antioxidative agent. However, it could induce cellular damage at high concentrations. In conclusion, a special caution is required to use S. nigrum extracts as a cosmetic ingredient.

본 연구에서는 건조된 까마중(Solanum nigrum L.) 전초의 50% 에탄올 추출물, 에틸아세테이트 분획, 아글리콘 분획을 이용하여 항산화 실험을 진행하였다. 1,1-diphenyl-2-picrylhydrazyl(DPPH)을 이용한 자유라디칼 소거 활성($FSC_{50}$)은 50% 에탄올 추출물, 에틸아세테이트 분획, 아글리콘 분획에서 각각 $215.46{\mu}g/mL$, $42.43{\mu}g/mL$, $52.28{\mu}g/mL$이였다. Luminol-의존성 화학발광법을 이용한 $Fe^{3+}-EDTA/H_2O_2$ 계에서의 총항산화능($OSC_{50}$) 평가에서, 까마중 50% 에탄올 추출물은 $25.25{\mu}g/mL$, 에틸아세테이트 분획은 $7.05{\mu}g/mL$, 아글리콘 분획은 $6.25{\mu}g/mL$를 나타냈다. $^1O_2$로 유도된 적혈구 세포손상에 대한 보호효과 측정에서는 까마중 50% 에탄올 추출물 및 아글리콘 분획은 $5{\sim}25{\mu}g/mL$ 농도에서는 세포보호효과를 나타냈으나 높은 농도에서는 세포보호 활성을 나타내지 않았다. 이러한 결과를 통해 까마중 추출물 및 분획물들은 항산화 활성을 가지고 있지만, 세포 수준에서는 비교적 높은 농도에서 활성산소로 유도된 세포 손상을 촉진할 수도 있음을 시사한다. 따라서 화장품 등에 까마중 추출물을 응용할 때는 사용상 주의가 필요한 것으로 판단된다.

Keywords

References

  1. M. Yaar and B. A. Gilchrest, Photoaging: Mechanism, Prevention and Therapy, Br. J. Dermatol., 157(5), 874 (2007). https://doi.org/10.1111/j.1365-2133.2007.08108.x
  2. L. Packer, Ultraviolet Radiation (UVA, UVB) and Skin Antioxidants, In: Free Radical Damage and Its Control, (C. A. Rice-Evans and R. H. Burdon,eds), Elsevier Science B. V., 239 (1994).
  3. S. N. Park, Effects of Flavonoids and Other Phenolic Compounds on Reactive Oxygen-mediated Biochemical Reactions, Ph.D. Thesis, Seoul National University, (1989).
  4. H.-U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, Role of Reactive Oxygen Species (ROS) in Apoptosis Induction, Apoptosis., 5, 415 (2000). https://doi.org/10.1023/A:1009616228304
  5. S. N. Park, Antioxidative Properties of Baicalein, Component from Scutellaria baicalensis Georgi and its Application to Cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
  6. Y. J. Ahn, B. R. Won, M. K Kang, J. H. Kim, and S. N. Park, Antioxidant Activity and Component Analysis of Fermented Lavendula Angustifolia Extracts, J. Soc. Cosmet. Scientists Korea, 35(2), 125 (2009).
  7. L. C. Magdalena and Y. A. Tak, Reactive oxygen species, Cellular Redox System, and Apoptosis, Free Radic. Biol. Med., 48(6), 749 (2010). https://doi.org/10.1016/j.freeradbiomed.2009.12.022
  8. R. S. Sohala and W. C. Orrb., The Redox Stress Hypothesis of Aging, Free Radic. Biol. Med., 52(3), 539 (2012). https://doi.org/10.1016/j.freeradbiomed.2011.10.445
  9. S. N. Park, Protective Effect of Isoflavone, Genistein from Soybean on Singlet Oxygen induced Photohemolysis of Human Erythrocytes, Korean J. Food Sci. Technol., 35(3), 510 (2003).
  10. L. Packer, Ultraviolet Radiation (UVA, UVB) and Skin Antioxidants, Free radical damage and its control., 28, 239 (1994). https://doi.org/10.1016/S0167-7306(08)60445-7
  11. K. Scharffetter-Kochanek, Photoaging of the Connective Tissues of Skin: Its Prevention and Therapy, Adv. Pharmacol., 38, 639 (1997).
  12. S. N. Park, D. H. Won, J. P. Hwang and S. B. Han, Cellular Protective Effects of Dehydroeffusol Isolated from Juncus effusus L. and the Mechanisms underlying These Effects, J. Ind. Eng. Chem., 20(5), 3046 (2014). https://doi.org/10.1016/j.jiec.2013.11.041
  13. J. E. Kim, H. J. Lee, M. S. Lim, M. A Park, and S. N. Park, Cellular Protective Effect and Liposome Formulation for Enhanced Transdermal Delivery of Prsicaria hydropiper L. extract, J. Soc. Cosmet. Scientists Korea, 38(1), 15 (2012). https://doi.org/10.15230/SCSK.2012.38.1.015
  14. S. Jeon, C. Y. Yoo, and S. N. Park, Improved Stability and Skin Permeability of Sodium Hyaluronate-chitosan Multilayered Liposomes by Layer-by-Layer Electrostatic Deposition for Quercetin Delivery, Colloids Surf. B Biointerfaces, 129, 7 (2015). https://doi.org/10.1016/j.colsurfb.2015.03.018
  15. D. Xia, Z. Fangshi, Y. Yun, and L. Min, Purification, Antitumor Activity in vitro of Steroidal Glycoalkaloids from Black Nightshade (Solanum nigrum L.), Food chemistry, 141, 1181 (2013). https://doi.org/10.1016/j.foodchem.2013.03.062
  16. X. Zhao, X. He, G. Wang, H. Gao, G. Zhou, W. Ye, and X. Yao, Steroidal Saponins from Solanum nigrum, J. Nat. Prod., 69, 1158 (2006). https://doi.org/10.1021/np060091z
  17. A. E. Elsadig, S. A. Alia, and G. R. James,, Changes in The Steroidal Alkaloid Solasodine during Development of Solanum nigrum and Solanum incanum, Phytochemistry, 46, 489. (1997). https://doi.org/10.1016/S0031-9422(97)00323-3
  18. T. Ikeda, H. Tsumagari, and T. Nohara, Steroidal Oligoglycosides from Solanum nigrum, Chem. Pharm. Bull. (Tokyo), 48, 1062 (2000). https://doi.org/10.1248/cpb.48.1062
  19. M. Sikdar and U. Dutta, Traditional Phytotherapy among The Nath People of Assam, Ethno-Med., 2(1) 39 (2008). https://doi.org/10.1080/09735070.2008.11886313
  20. R. Jain, A. Sharma, S. Gupta, J. P. Sarethy, and R. Gabrani, Solanum nigrum: Current Perspectives on Therapeutic Properties., Altern Med Rev., 16(1), 78 (2011).
  21. D. Glossman-Mitnik, CHIH-DFT Determination of The Molecular Structure and Infrared and Ultraviolet Spectra of Gamma-solanine, Spectrochim. Acta. A Mol. Biomol. Spectrosc., 66, 208 (2007). https://doi.org/10.1016/j.saa.2006.03.033
  22. U. S. Akula and B. Odhav, In Vitro 5-Lipoxygenase Inhibition of Polyphenolic Antioxidants from Undomesticated Plants of South Africa, J. Med. Plants Res., 2(9), 207 (2008).
  23. K.S. Heo and K.T. Lim, Antioxidative Effects of Glycoprotein Isolated from Solanum nigrum L., 7(3), 349 (2004). https://doi.org/10.1089/jmf.2004.7.349

Cited by

  1. Antioxidant and Cellular Protective Effects against Oxidative Stress of Calendula officinalis Flowers Extracts in Human Skin Cells vol.27, pp.6, 2016, https://doi.org/10.14478/ace.2016.1093
  2. 하고초 추출물의 항산화 활성 및 성분 분석 vol.33, pp.4, 2016, https://doi.org/10.12925/jkocs.2016.33.4.647
  3. 볶은 옻씨를 첨가한 차 음료의 품질특성 및 저장 중 산화방지 활성의 변화량 측정 vol.49, pp.3, 2017, https://doi.org/10.9721/kjfst.2017.49.3.318
  4. 수확시기에 따른 까마중 열매의 유용성분 및 생리활성 변화 vol.24, pp.6, 2015, https://doi.org/10.11002/kjfp.2017.24.6.849
  5. 금전초 추출물 및 분획물의 항산화 활성 및 세포 보호 효과 vol.29, pp.2, 2015, https://doi.org/10.14478/ace.2017.1113
  6. 까마중 추출물의 Candida albicans에 대한 항균효과에 대한 융합적 연구 vol.9, pp.12, 2015, https://doi.org/10.15207/jkcs.2018.9.12.069