• 제목/요약/키워드: cellular immunity

검색결과 298건 처리시간 0.026초

Mitophagy and Innate Immunity in Infection

  • Cho, Dong-Hyung;Kim, Jin Kyung;Jo, Eun-Kyeong
    • Molecules and Cells
    • /
    • 제43권1호
    • /
    • pp.10-22
    • /
    • 2020
  • Mitochondria have several quality control mechanisms by which they maintain cellular homeostasis and ensure that the molecular machinery is protected from stress. Mitophagy, selective autophagy of mitochondria, promotes mitochondrial quality control by inducing clearance of damaged mitochondria via the autophagic machinery. Accumulating evidence suggests that mitophagy is modulated by various microbial components in an attempt to affect the innate immune response to infection. In addition, mitophagy plays a key role in the regulation of inflammatory signaling, and mitochondrial danger signals such as mitochondrial DNA translocated into the cytosol can lead to exaggerated inflammatory responses. In this review, we present current knowledge on the functional aspects of mitophagy and its crosstalk with innate immune signaling during infection. A deeper understanding of the role of mitophagy could facilitate the development of more effective therapeutic strategies against various infections.

Crosstalk between the Producers and Immune Targets of IL-9

  • Van Anh Do-Thi;Jie-Oh Lee;Hayyoung Lee;Young Sang Kim
    • IMMUNE NETWORK
    • /
    • 제20권6호
    • /
    • pp.45.1-45.16
    • /
    • 2020
  • IL-9 has been reported to play dual roles in the pathogenesis of autoimmune disorders and cancers. The collaboration of IL-9 with microenvironmental factors including the broader cytokine milieu and other cellular components may provide important keys to explain its conflicting effects in chronic conditions. In this review, we summarize recent findings on the cellular sources of, and immunological responders to IL-9, in order to interpret the role of IL-9 in the regulation of immune responses. This knowledge will provide new perspectives to improve clinical benefits and limit adverse effects of IL-9 when treating pathologic conditions.

Recent Insights into Cellular Crosstalk in Respiratory and Gastrointestinal Mucosal Immune Systems

  • Sae-Hae Kim;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • 제20권6호
    • /
    • pp.44.1-44.19
    • /
    • 2020
  • The human body is continuously threatened by pathogens, and the immune system must maintain a balance between fighting infection and becoming over-activated. Mucosal surfaces cover several anatomically diverse organs throughout the body, such as the respiratory and gastrointestinal tracts, and are directly exposed to the external environment. Various pathogens invade the body through mucosal surfaces, making the mucosa the frontline of immune defense. The immune systems of various mucosal tissues display distinctive features that reflect the tissues' anatomical and functional characteristics. This review discusses the cellular components that constitute the respiratory and gastrointestinal tracts; in particular, it highlights the complex interactions between epithelial and immune cells to induce Ag-specific immune responses in the lung and gut. This information on mucosal immunity may facilitate understanding of the defense mechanisms against infectious agents that invade mucosal surfaces, such as severe acute respiratory syndrome coronavirus 2, and provide insight into effective vaccine development.

월견초종자유가 생쥐의 면역반응에 미치는 영향 (Effects of Evening Primrose Oil on the Immune Responses in Mice)

  • 안영근;오연준;김정훈
    • 약학회지
    • /
    • 제36권2호
    • /
    • pp.93-109
    • /
    • 1992
  • The purpose of this experiment was to investigate both the immunomodulatory effect of evening primrose(EP) oil and the effects of EP oil on immunoregulation by cyclophosphamide in mice. EP oil at doses of 0.1, 0.2 and 0.4 ml/kg were orally administered to ICR male mice once daily for 28 consecutive days. Cyclophosphamide was injected intraperitoneally to ICR mice with a single dose of 5 mg/kg at 2 days before secondary immunization. Mice were sensitized and challenged with sheep red blood cells(S-RBC). Immnune responses were evaluated by humoral and cellular immune responses and non-specific immune response. The results of this study were summarized as follows; (1) The humoral immune responses such as hemagglutination titer(HA), hemolysin titer(HY), Arthus reaction and plaque forming cell(PFC) were significantly enhanced in the low dose EP oil administered groups(0.1 and 0.2 ml/kg). However, in the high dose EP oil administered group(0.4 ml/kg) the responses were significantly lowered. (2) In the case of cellular immune responses, delayed type hypersensitivity reaction(DTH) was significantly decreased in EP oil whereas rosette forming cell(RFC) was remarkably enhanced. (3) Activities of natural killer cells and phagocyte were generally enhanced in EP oil. In addition, serum albumin and globulin were also increased.

  • PDF

감염과 선천면역 (Infection and Innate Immunityi)

  • 오무영
    • Clinical and Experimental Pediatrics
    • /
    • 제48권11호
    • /
    • pp.1153-1161
    • /
    • 2005
  • As known by other name(natural immunity), the innate immune system comprises all those mechanisms for dealing with infection that are constitutive or built in, changing little with age or with experience of infection. Though in some ways less sophisticated than adaptive immunity, innate immunity should not belittled, since it has evidently protected thousands of species of invertebrates sufficiently to survive for up to 2 billion years. In the innate immune system, molecules of both cellular and humoral types are involved, corresponding to the need to recognize and dispose of different types of pathogen, to promote inflammatory responses and to interact to the adaptive immune system. A major features of innate immunity are the presence of the normal gut flora, complements, macrophages, dendritic cells, natural killer cells and many cytokines that can block the establishment of infection. Both phagocytic cells and complement system have tremendous potential for damaging host cells, but fortunately they are normally only triggered by foreign materials, and usually most of their destructive effects are focussed on the surface of these or in the safe environment of the phagolysosome. This article addreses the comprehensive mechanisms of the major components of the innate immune system to prevent the infection.

The Ralstonia pseudosolanacearum Type III Effector RipL Delays Flowering and Promotes Susceptibility to Pseudomonas syringae in Arabidopsis thaliana

  • Wanhui Kim;Hyelim Jeon;Hyeonjung Lee;Kee Hoon Sohn;Cecile Segonzac
    • Molecules and Cells
    • /
    • 제46권11호
    • /
    • pp.710-724
    • /
    • 2023
  • The plant defense responses to microbial infection are tightly regulated and integrated with the developmental program for optimal resources allocation. Notably, the defense-associated hormone salicylic acid (SA) acts as a promoter of flowering while several plant pathogens actively target the flowering signaling pathway to promote their virulence or dissemination. Ralstonia pseudosolanacearum inject tens of effectors in the host cells that collectively promote bacterial proliferation in plant tissues. Here, we characterized the function of the broadly conserved R. pseudosolanacearum effector RipL, through heterologous expression in Arabidopsis thaliana. RipL-expressing transgenic lines presented a delayed flowering, which correlated with a low expression of flowering regulator genes. Delayed flowering was also observed in Nicotiana benthamiana plants transiently expressing RipL. In parallel, RipL promoted plant susceptibility to virulent strains of Pseudomonas syringae in the effector-expressing lines or when delivered by the type III secretion system. Unexpectedly, SA accumulation and SA-dependent immune signaling were not significantly affected by RipL expression. Rather, the RNA-seq analysis of infected RipL-expressing lines revealed that the overall amplitude of the transcriptional response was dampened, suggesting that RipL could promote plant susceptibility in an SA-independent manner. Further elucidation of the molecular mechanisms underpinning RipL effect on flowering and immunity may reveal novel effector functions in host cells.

Marked Expansion of CD11c+CD8+ T-Cells in Melanoma-bearing Mice Induced by Anti-4-1BB Monoclonal Antibody

  • Ju, Seong-A;Park, Sang-Min;Lee, Sang-Chul;Kwon, Byoung S.;Kim, Byung-Sam
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.132-138
    • /
    • 2007
  • 4-1BB (CD137), a member of the tumor necrosis factor receptor superfamily, is expressed on activated T-cells, and 4-1BB signaling due to interaction with 4-1BB ligand or ligation with anti-4-1BB monoclonal antibody (mAb) costimulates T cells. It has been shown that administration of anti-4-1BB mAb induces anti-tumor immunity in mice, but the nature of the cellular subsets responsible for this immunity is uncertain. In this study we found that anti-4-1BB mAb administration to B16F10 melanoma-bearing mice induced marked expansion of $CD11c^+CD8^+$ T-cells in parallel with suppression of pulmonary tumors. The mAb-treated mice produced higher levels of $IFN-{\gamma}$ in their tumor tissues, spleen and lymph nodes than mice exposed to control antibody. When the $CD11c^+CD8^+$ T-cells were purified and re-stimulated in vitro, they produced high levels of the Th1 cytokines, $IFN-{\gamma}$ and IL-2, but low levels of the Th2 cytokines, IL-4 and IL-10. Furthermore, they expressed high levels of 4-1BB and CD107a, a marker of activated cytotoxic T-lymphocytes. Our results suggest that $CD11c^+CD8^+$ T-cells play a role in the anti-tumor immunity induced by anti-4-1BB mAb.

수종 한약재가 면역 반응에 미치는 영향 (Effects of Several Herbs on the Immune Responses)

  • 송봉근
    • 대한한의학회지
    • /
    • 제18권2호
    • /
    • pp.43-57
    • /
    • 1997
  • It was claimed that the herbal medicine with the function of strengthening the body resistance exerts to enhance the immunity. And the medicine with the effect of eliminating the pathogenic factor is stated to inhibit the immune response. To evaluate the the effects of the herbal medicine on the immune response, the mice were administrated with the herbal medicine for 2 weeks. And the responses were analyzed. As the result, water extract of Radix Astragali, Fructus Psoraleae, Cortex Acanthopanacis, Semen Coicis, Herba Ecliptae, Spica Prunellae, and Radix Sophorae increased the ROI production, while Radix Tripterygia inhibited it. Phagocytic activity was increased after administration of Radix Astragal, Fructus Psoraleae, Cortex Acanthopanacis, Herba Ecliptae, Spica Prunellae and Radix Sophorae. NK cell activity was also significantly inhibited by Radix Tripterygia. Administration of Radix Astragali, Fructus Psoraleae, Cortex Acanthopanacis, Herba Ecliptae, Spica Prunellae and Semen Coicis enhanced the antibodies(hemagglutinin and hemolysin) formation and the appearance of rosette forming cells of the spleen, while Radix Sophorae and Radix Tripterygia decreased it. Radix Sophorae and Radix Tripterygia also decreased the allogenic immune response and mixed-lymphocyte reaction. And all the experimental herbs decreased contact hypersensitivity against dinitroflurobenzene. These results show Radix Astragali, Fructus Psoraleae, Spica Prunellae, Cortex Acanthopanacis, Semen Coicis and Herba Ecliptae enhanced innate immunity, humoral and cellular immune responses. However Radix Sophorae and Radix Tripterygia exert imunosuppressive action. Also these results indicate that the medicine with the action of the strengthening the body resistance enhances the immunity. And the the some of drugs belonging to the eliminating the pathogenic factor also increase the immune responses.

  • PDF

The Growth, Innate Immunity and Protection against H2O2-Induced Oxidative Damage of a Chitosan-Coated Diet in the Olive Flounder Paralichthys olivaceus

  • Samarakoon, Kalpa W.;Cha, Seon-Heui;Lee, Ji-Hyeok;Jeon, You-Jin
    • Fisheries and Aquatic Sciences
    • /
    • 제16권3호
    • /
    • pp.149-158
    • /
    • 2013
  • We demonstrate enhanced growth, innate immunity and protection against hydrogen peroxide ($H_2O_2$)-induced protein oxidation and cellular DNA damage in olive flounder Paralichthys olivaceus fed a chitosan-coated moist pallet (MP) diet. A chitosan-based biopolymer coated MP as the experimental diet and a non-coated MP (control) was fed to olive flounder fish. Growth, including the average weight gain (g/fish), weight gain (%) and feed intake (g) of the fish group fed a chitosan-coated MP diet increased significantly. The survival rate was reported as 100% throughout the experimental period. Immunological parameters indicated higher mucus lysozyme activity and significantly higher fish skin mucus total protein content was observed in fish fed the chitosan-coated MP diet compared to the control. A blood plasma analysis revealed attenuation of cellular DNA and protein oxidative damage caused by $H_2O_2$-induced oxidative stress in the fish fed the chitosan-coated MP diet compared to the control group. Moreover, blood serum biochemical analysis revealed health-promoting effects, including significantly higher hemoglobin and total cholesterol levels in the fish fed the chitosan-coated MP diet compared to the control group. In conclusion, growth, innate immunity and protection against oxidative stresses were improved by feeding of the chitosan-coated MP diet to olive flounder reared in aquaculture.

Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans

  • Kwon, Sujeong;Kim, Eun Ji E.;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • 제51권6호
    • /
    • pp.274-279
    • /
    • 2018
  • Mitochondria are crucial organelles that generate cellular energy and metabolites. Recent studies indicate that mitochondria also regulate immunity. In this review, we discuss key roles of mitochondria in immunity against pathogen infection and underlying mechanisms, focusing on discoveries using Caenorhabditis elegans. Various mitochondrial processes, including mitochondrial surveillance mechanisms, mitochondrial unfolded protein response ($UPR^{mt}$), mitophagy, and reactive oxygen species (ROS) production, contribute to immune responses and resistance of C. elegans against pathogens. Biological processes of C. elegans are usually conserved across phyla. Thus, understanding the mechanisms of mitochondria-mediated defense responses in C. elegans may provide insights into similar mechanisms in complex organisms, including mammals.