Browse > Article
http://dx.doi.org/10.14348/molcells.2020.2329

Mitophagy and Innate Immunity in Infection  

Cho, Dong-Hyung (School of Life Sciences, Kyungpook National University)
Kim, Jin Kyung (Department of Microbiology, Chungnam National University School of Medicine)
Jo, Eun-Kyeong (Department of Microbiology, Chungnam National University School of Medicine)
Abstract
Mitochondria have several quality control mechanisms by which they maintain cellular homeostasis and ensure that the molecular machinery is protected from stress. Mitophagy, selective autophagy of mitochondria, promotes mitochondrial quality control by inducing clearance of damaged mitochondria via the autophagic machinery. Accumulating evidence suggests that mitophagy is modulated by various microbial components in an attempt to affect the innate immune response to infection. In addition, mitophagy plays a key role in the regulation of inflammatory signaling, and mitochondrial danger signals such as mitochondrial DNA translocated into the cytosol can lead to exaggerated inflammatory responses. In this review, we present current knowledge on the functional aspects of mitophagy and its crosstalk with innate immune signaling during infection. A deeper understanding of the role of mitophagy could facilitate the development of more effective therapeutic strategies against various infections.
Keywords
infection; inflammation; innate immunity; mitochondria; mitophagy;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Gegg, M.E., Cooper, J.M., Chau, K.Y., Rojo, M., Schapira, A.H., and Taanman, J.W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19, 4861-4870.   DOI
2 Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119-131.   DOI
3 Gkikas, I., Palikaras, K., and Tavernarakis, N. (2018). The role of mitophagy in innate immunity. Front. Immunol. 9, 1283.   DOI
4 Gomes, L.C. and Scorrano, L. (2013). Mitochondrial morphology in mitophagy and macroautophagy. Biochim. Biophys. Acta 1833, 205-212.   DOI
5 Gou, H., Zhao, M., Xu, H., Yuan, J., He, W., Zhu, M., Ding, H., Yi, L., and Chen, J. (2017). CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget 8, 39382-39400.   DOI
6 Hara, Y., Yanatori, I., Ikeda, M., Kiyokage, E., Nishina, S., Tomiyama, Y., Toida, K., Kishi, F., Kato, N., Imamura, M., et al. (2014). Hepatitis C virus core protein suppresses mitophagy by interacting with parkin in the context of mitochondrial depolarization. Am. J. Pathol. 184, 3026-3039.   DOI
7 Zhang, Q., Kuang, H., Chen, C., Yan, J., Do-Umehara, H.C., Liu, X.Y., Dada, L., Ridge, K.M., Chandel, N.S., and Liu, J. (2015). The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat. Immunol. 16, 458-466.   DOI
8 Kim, S.J., Syed, G.H., Khan, M., Chiu, W.W., Sohail, M.A., Gish, R.G., and Siddiqui, A. (2014). Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc. Natl. Acad. Sci. U. S. A. 111, 6413-6418.   DOI
9 Kim, S.J., Khan, M., Quan, J., Till, A., Subramani, S., and Siddiqui, A. (2013a). Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog. 9, e1003722.   DOI
10 Kim, S.J., Syed, G.H., and Siddiqui, A. (2013b). Hepatitis C virus induces the mitochondrial translocation of Parkin and subsequent mitophagy. PLoS Pathog. 9, e1003285.   DOI
11 Klein, C. and Westenberger, A. (2012). Genetics of Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, a008888.   DOI
12 Krakauer, T. (2019). Inflammasomes, autophagy, and cell death: the trinity of innate host defense against intracellular bacteria. Mediators Inflamm. 2019, 2471215.
13 Zhang, Y., Yao, Y., Qiu, X., Wang, G., Hu, Z., Chen, S., Wu, Z., Yuan, N., Gao, H., Wang, J., et al. (2019b). Listeria hijacks host mitophagy through a novel mitophagy receptor to evade killing. Nat. Immunol. 20, 433-446.   DOI
14 Hawn, T.R., Shah, J.A., and Kalman, D. (2015). New tricks for old dogs: countering antibiotic resistance in tuberculosis with host-directed therapeutics. Immunol. Rev. 264, 344-362.   DOI
15 He, X., Zhu, Y., Zhang, Y., Geng, Y., Gong, J., Geng, J., Zhang, P., Zhang, X., Liu, N., Peng, Y., et al. (2019). RNF34 functions in immunity and selective mitophagy by targeting MAVS for autophagic degradation. EMBO J. 38, e100978.
16 Heo, J.M., Ordureau, A., Paulo, J.A., Rinehart, J., and Harper, J.W. (2015). The PINK1-PARKIN mitochondrial ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60, 7-20.   DOI
17 Zhang, R., Varela, M., Vallentgoed, W., Forn-Cuni, G., van der Vaart, M., and Meijer, A.H. (2019a). The selective autophagy receptors Optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection. PLoS Pathog. 15, e1007329.   DOI
18 Zhang, X., Yuan, D., Sun, Q., Xu, L., Lee, E., Lewis, A.J., Zuckerbraun, B.S., and Rosengart, M.R. (2017). Calcium/calmodulin-dependent protein kinase regulates the PINK1/Parkin and DJ-1 pathways of mitophagy during sepsis. FASEB J. 31, 4382-4395.   DOI
19 Zhao, C. and Zhao, W. (2019). TANK-binding kinase 1 as a novel therapeutic target for viral diseases. Expert Opin. Ther. Targets 23, 437-446.   DOI
20 Zhou, D., Zhou, M., Wang, Z., Fu, Y., Jia, M., Wang, X., Liu, M., Zhang, Y., Sun, Y., Lu, Y., et al. (2019a). PGRN acts as a novel regulator of mitochondrial homeostasis by facilitating mitophagy and mitochondrial biogenesis to prevent podocyte injury in diabetic nephropathy. Cell Death Dis. 10, 524.   DOI
21 Zhou, J., Yang, R., Zhang, Z., Liu, Q., Zhang, Y., Wang, Q., and Yuan, H. (2019b). Mitochondrial protein PINK1 positively regulates RLR signaling. Front. Immunol. 10, 1069.   DOI
22 Zhu, L., Mou, C., Yang, X., Lin, J., and Yang, Q. (2016). Mitophagy in TGEV infection counteracts oxidative stress and apoptosis. Oncotarget 7, 27122-27141.   DOI
23 Hollville, E., Carroll, R.G., Cullen, S.P., and Martin, S.J. (2014). Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. Mol. Cell 55, 451-466.   DOI
24 Kurose, I., Miura, S., Fukumura, D., Yonei, Y., Saito, H., Tada, S., Suematsu, M., and Tsuchiya, M. (1993). Nitric oxide mediates Kupffer cell-induced reduction of mitochondrial energization in hepatoma cells: a comparison with oxidative burst. Cancer Res. 53, 2676-2682.
25 Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I., and Youle, R.J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314.   DOI
26 Li, J., Ma, C., Long, F., Yang, D., Liu, X., Hu, Y., Wu, C., Wang, B., Wang, M., Chen, Y., et al. (2019). Parkin impairs antiviral immunity by suppressing the mitochondrial reactive oxygen species-Nlrp3 axis and antiviral inflammation. iScience 16, 468-484.   DOI
27 Hino, K., Nishina, S., Sasaki, K., and Hara, Y. (2019). Mitochondrial damage and iron metabolic dysregulation in hepatitis C virus infection. Free Radic. Biol. Med. 133, 193-199.   DOI
28 Hirota, Y., Tamashita, S., Kurihara, Y., Jin, X., Aihara, M., Saigusa, T., Kang, D., and Kanki, T. (2015). Mitophagy is primarily due to alterative autophagy and requires the MAPK1 and MAPK14 signaling pathways. Autophagy 11, 332-343.   DOI
29 Ishii, K.J., Koyama, S., Nakagawa, A., Coban, C., and Akira, S. (2008). Host innate immune receptors and beyond: making sense of microbial infections. Cell Host Microbe 3, 352-363.   DOI
30 Hu, Y.W., Zhang, J., Wu, X.M., Cao, L., Nie, P., and Chang, M.X. (2018). TANK-Binding Kinase 1 (TBK1) isoforms negatively regulate type I interferon induction by inhibiting TBK1-IRF3 interaction and IRF3 phosphorylation. Front. Immunol. 9, 84.   DOI
31 Jabir, M.S., Hopkins, L., Ritchie, N.D., Ullah, I., Bayes, H.K., Li, D., Tourlomousis, P., Lupton, A., Puleston, D., Simon, A.K., et al. (2015). Mitochondrial damage contributes to Pseudomonas aeruginosa activation of the inflammasome and is downregulated by autophagy. Autophagy 11, 166-182.   DOI
32 Jabir, M.S., Ritchie, N.D., Li, D., Bayes, H.K., Tourlomousis, P., Puleston, D., Lupton, A., Hopkins, L., Simon, A.K., Bryant, C., et al. (2014). Caspase-1 cleavage of the TLR adaptor TRIF inhibits autophagy and beta-interferon production during Pseudomonas aeruginosa infection. Cell Host Microbe 15, 214-227.   DOI
33 Jassey, A., Liu, C.H., Changou, C.A., Richardson, C.D., Hsu, H.Y., and Lin, L.T. (2019). Hepatitis C virus non-structural protein 5A (NS5A) disrupts mitochondrial dynamics and induces mitophagy. Cells 8, E290.   DOI
34 Martinon, F., Mayor, A., and Tschopp, J. (2009). The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229-265.   DOI
35 Zou, J., Li, W., Misra, A., Yue, F., Song, K., Chen, Q., Guo, G., Yi, J., Kimata, J.T., and Liu, L. (2015). The viral restriction factor tetherin prevents leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) from association with beclin 1 and B-cell CLL/lymphoma 2 (Bcl-2) and enhances autophagy and mitophagy. J. Biol. Chem. 290, 7269-7279.   DOI
36 Li, S., Wang, J., Zhou, A., Khan, F.A., Hu, L., and Zhang, S. (2016). Porcine reproductive and respiratory syndrome virus triggers mitochondrial fission and mitophagy to attenuate apoptosis. Oncotarget 7, 56002-56012.   DOI
37 Li, S., Wu, H., Han, D., Ma, S., Fan, W., Wang, Y., Zhang, R., Fan, M., Huang, Y., Fu, X., et al. (2018). A novel mechanism of mesenchymal stromal cellmediated protection against sepsis: restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS. Oxid. Med. Cell. Longev. 2018, 3537609.
38 Liu, L., Feng, D., Chen, G., Chen, M., Zheng, Q., Song, P., Ma, Q., Zhu, C., Wang, R., Qi, W., et al. (2012a). Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat. Cell Biol. 14, 177-185.   DOI
39 Liu, S., Sawada, T., Lee, S., Yu, W., Silverio, G., Alapatt, P., Millan, I., Shen, A., Saxton, W., Kanao, T., et al. (2012b). Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 8, e1002537.   DOI
40 Mannam, P., Shinn, A.S., Srivastava, A., Neamu, R.F., Walker, W.E., Bohanon, M., Merkel, J., Kang, M.J., Dela Cruz, C.S., Ahasic, A.M., et al. (2014). MKK3 regulates mitochondrial biogenesis and mitophagy in sepsis-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 306, L604-L619.   DOI
41 Matheoud, D., Cannon, T., Voisin, A., Penttinen, A.M., Ramet, L., Fahmy, A.M., Ducrot, C., Laplante, A., Bourque, M.J., Zhu, L., et al. (2019). Intestinal infection triggers Parkinson's disease-like symptoms in Pink1(-/-) mice. Nature 571, 565-569.   DOI
42 McGuire, V.A. and Arthur, J.S. (2015). Subverting toll-like receptor signaling by bacterial pathogens. Front. Immunol. 6, 607.
43 Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., and Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370-375.   DOI
44 Amatullah, H., Shan, Y., Beauchamp, B.L., Gali, P.L., Gupta, S., Maron-Gutierrez, T., Speck, E.R., Fox-Robichaud, A.E., Tsang, J.L., Mei, S.H., et al. (2017). DJ-1/PARK7 impairs bacterial clearance in sepsis. Am. J. Respir. Crit. Care Med. 195, 889-905.   DOI
45 Asrat, S., de Jesus, D.A., Hempstead, A.D., Ramabhadran, V., and Isberg, R.R. (2014). Bacterial pathogen manipulation of host membrane trafficking. Annu. Rev. Cell Dev. Biol. 30, 79-109.   DOI
46 Bento, C.F., Empadinhas, N., and Mendes, V. (2015). Autophagy in the fight against tuberculosis. DNA Cell Biol. 34, 228-242.   DOI
47 Chen, G., Han, Z., Feng, D., Chen, Y., Chen, L., Wu, H., Huang, L., Zhou, C., Cai, X., Fu, C., et al. (2014). A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol. Cell 54, 362-377.   DOI
48 Meng, G., Xia, M., Wang, D., Chen, A., Wang, Y., Wang, H., Yu, D., and Wei, J. (2014). Mitophagy promotes replication of oncolytic Newcastle disease virus by blocking intrinsic apoptosis in lung cancer cells. Oncotarget 5, 6365-6374.   DOI
49 Mohamud, Y., Qu, J., Xue, Y.C., Liu, H., Deng, H., and Luo, H. (2019). CALCOCO2/NDP52 and SQSTM1/p62 differentially regulate coxsackievirus B3 propagation. Cell Death Differ. 26, 1062-1076.   DOI
50 Burman, J.L., Pickles, S., Wang, C., Sekine, S., Vargas, J.N.S., Zhang, Z., Youle, A.M., Nezich, C.L., Wu, X., Hammer, J.A., et al. (2017). Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J. Cell Biol. 216, 3231-3247.   DOI
51 Chew, T.S., O'Shea, N.R., Sewell, G.W., Oehlers, S.H., Mulvey, C.M., Crosier, P.S., Godovac-Zimmermann, J., Bloom, S.L., Smith, A.M., and Segal, A.W. (2015). Optineurin deficiency in mice contributes to impaired cytokine secretion and neutrophil recruitment in bacteria-driven colitis. Dis. Model. Mech. 8, 817-829.   DOI
52 Cho, D.H., Nakamura, T., and Lipton, S.A. (2010). Mitochondrial dynamics in cell death and neurodegeneration. Cell. Mol. Life Sci. 67, 3435-3447.   DOI
53 Nagi, M., Tanabe, K., Nakayama, H., Ueno, K., Yamagoe, S., Umeyama, T., Ohno, H., and Miyazaki, Y. (2016). Iron-depletion promotes mitophagy to maintain mitochondrial integrity in pathogenic yeast Candida glabrata. Autophagy 12, 1259-1271.   DOI
54 Mohanty, A., Tiwari-Pandey, R., and Pandey, N.R. (2019). Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response. J. Cell Commun. Signal. 13, 303-318.   DOI
55 Montava-Garriga, L. and Ganley, I.G. (2020). Outstanding questions in mitophagy: what we do and do not know. J. Mol. Biol. 432, 206-230.   DOI
56 Murray, P.J. and Wynn, T.A. (2011). Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723-737.   DOI
57 Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795-803.   DOI
58 Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.F., Gautier, C.A., Shen, J., Cookson, M.R., and Youle, R.J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298.   DOI
59 Ney, P.A. (2015). Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim. Biophys. Acta 1853, 2775-2783.   DOI
60 Niller, H.H., Masa, R., Venkei, A., Meszaros, S., and Minarovits, J. (2017). Pathogenic mechanisms of intracellular bacteria. Curr. Opin. Infect. Dis. 30, 309-315.   DOI
61 Ojeda, D.S., Grasso, D., Urquiza, J., Till, A., Vaccaro, M.I., and Quarleri, J. (2018). Cell death is counteracted by mitophagy in HIV-productively infected astrocytes but is promoted by inflammasome activation among non-productively infected cells. Front. Immunol. 9, 2633.   DOI
62 Shi, J., Wong, J., Piesik, P., Fung, G., Zhang, J., Jagdeo, J., Li, X., Jan, E., and Luo, H. (2013). Cleavage of sequestosome 1/p62 by an enteroviral protease results in disrupted selective autophagy and impaired NFKB signaling. Autophagy 9, 1591-1603.   DOI
63 Silva, M.T. (2011). Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. J. Leukoc. Biol. 89, 675-683.   DOI
64 Sin, J., McIntyre, L., Stotland, A., Feuer, R., and Gottlieb, R.A. (2017). Coxsackievirus B escapes the infected cell in ejected mitophagosomes. J. Virol. 91, e01347-17.
65 Novak, I., Kirkin, V., McEwan, D.G., Zhang, J., Wild, P., Rozenknop, A., Rogov, V., Lohr, F., Popovic, D., Occhipinti, A., et al. (2010). Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45-51.   DOI
66 Ogawa, M., Mimuro, H., Yoshikawa, Y., Ashida, H., and Sasakawa, C. (2011). Manipulation of autophagy by bacteria for their own benefit. Microbiol. Immunol. 55, 459-471.   DOI
67 Oka, T., Hikoso, S., Yamaguchi, O., Taneike, M., Takeda, T., Tamai, T., Oyabu, J., Murakawa, T., Nakayama, H., Nishida, K., et al. (2012). Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251-255.   DOI
68 Paik, S., Kim, J.K., Chung, C., and Jo, E.K. (2018). Autophagy: a new strategy for host-directed therapy of tuberculosis. Virulence 10, 1-12.   DOI
69 Pareja, M.E. and Colombo, M.I. (2013). Autophagic clearance of bacterial pathogens: molecular recognition of intracellular microorganisms. Front. Cell. Infect. Microbiol. 3, 54.
70 Pickles, S., Vigie, P., and Youle, R.J. (2018). Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170-R185.   DOI
71 Pilli, M., Arko-Mensah, J., Ponpuak, M., Roberts, E., Master, S., Mandell, M.A., Dupont, N., Ornatowski, W., Jiang, S., Bradfute, S.B., et al. (2012). TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37, 223-234.   DOI
72 Srivastava, A., McGinniss, J., Wong, Y., Shinn, A.S., Lam, T.T., Lee, P.J., and Mannam, P. (2015). MKK3 deletion improves mitochondrial quality. Free Radic. Biol. Med. 87, 373-384.   DOI
73 Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., Burman, J.L., Li, Y., Zhang, Z., Narendra, D.P., et al. (2018). Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258-262.   DOI
74 Snell, L.M., McGaha, T.L., and Brooks, D.G. (2017). Type I interferon in chronic virus infection and cancer. Trends Immunol. 38, 542-557.   DOI
75 Sorbara, M.T. and Girardin, S.E. (2015). Emerging themes in bacterial autophagy. Curr. Opin. Microbiol. 23, 163-170.   DOI
76 Sumpter, R., Jr. and Levine, B. (2010). Autophagy and innate immunity: triggering, targeting and tuning. Semin. Cell Dev. Biol. 21, 699-711.   DOI
77 Shi, G. and McQuibban, G.A. (2017). The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep. 18, 1458-1472.   DOI
78 Tang, D., Kang, R., Coyne, C.B., Zeh, H.J., and Lotze, M.T. (2012). PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev. 249, 158-175.   DOI
79 Sun, S., Sursal, T., Adibnia, Y., Zhao, C., Zheng, Y., Li, H., Otterbein, L.E., Hauser, C.J., and Itagaki, K. (2013). Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One 8, e59989.   DOI
80 Tal, M.C. and Iwasaki, A. (2011). Mitoxosome: a mitochondrial platform for cross-talk between cellular stress and antiviral signaling. Immunol. Rev. 243, 215-234.   DOI
81 Randow, F. and Munz, C. (2012). Autophagy in the regulation of pathogen replication and adaptive immunity. Trends Immunol. 33, 475-487.   DOI
82 Piquereau, J., Godin, R., Deschenes, S., Bessi, V.L., Mofarrahi, M., Hussain, S.N., and Burelle, Y. (2013). Protective role of PARK2/Parkin in sepsis-induced cardiac contractile and mitochondrial dysfunction. Autophagy 9, 1837-1851.   DOI
83 Quinsay, M.N., Thomas, R.L., Lee, Y., and Gustafsson, A.B. (2010). Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6, 855-862.   DOI
84 Rademann, P., Weidinger, A., Drechsler, S., Meszaros, A., Zipperle, J., Jafarmadar, M., Dumitrescu, S., Hacobian, A., Ungelenk, L., Rostel, F., et al. (2017). Mitochondria-targeted antioxidants SkQ1 and MitoTEMPO failed to exert a long-term beneficial effect in murine polymicrobial sepsis. Oxid. Med. Cell. Longev. 2017, 6412682.
85 Rawat, P., Teodorof-Diedrich, C., and Spector, S.A. (2019). Human immunodeficiency virus Type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia 67, 802-824.   DOI
86 Richter, B., Sliter, D.A., Herhaus, L., Stolz, A., Wang, C., Beli, P., Zaffagnini, G., Wild, P., Martens, S., Wagner, S.A., et al. (2016). Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. U. S. A. 113, 4039-4044.   DOI
87 Tsao, N., Kuo, C.F., Cheng, M.H., Lin, W.C., Lin, C.F., and Lin, Y.S. (2019). Streptolysin S induces mitochondrial damage and macrophage death through inhibiting degradation of glycogen synthase kinase-3beta in Streptococcus pyogenes infection. Sci. Rep. 9, 5371.   DOI
88 Taylor, D.E., Ghio, A.J., and Piantadosi, C.A. (1995). Reactive oxygen species produced by liver mitochondria of rats in sepsis. Arch. Biochem. Biophys. 316, 70-76.   DOI
89 Teodorof-Diedrich, C. and Spector, S.A. (2018). Human immunodeficiency virus type 1 gp120 and Tat induce mitochondrial fragmentation and incomplete mitophagy in human neurons. J. Virol. 92, e00993-18.
90 To, E.E., Erlich, J.R., Liong, F., Luong, R., Liong, S., Esaq, F., Oseghale, O., Anthony, D., McQualter, J., Bozinovski, S., et al. (2019). Mitochondrial reactive oxygen species contribute to pathological inflammation during influenza A virus infection in mice. Antioxid. Redox Signal. 2019 Jul 12 [Epub]. doi: 10.1089/ars.2019.7727.
91 Tschurtschenthaler, M. and Adolph, T.E. (2018). The selective autophagy receptor Optineurin in Crohn's disease. Front. Immunol. 9, 766.   DOI
92 Wong, Y.C. and Holzbaur, E.L. (2014). Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc. Natl. Acad. Sci. U. S. A. 111, E4439-E4448.   DOI
93 Schulze-Osthoff, K., Bakker, A.C., Vanhaesebroeck, B., Beyaert, R., Jacob, W.A., and Fiers, W. (1992). Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317-5323.   DOI
94 Vo, M.T., Smith, B.J., Nicholas, J., and Choi, Y.B. (2019). Activation of NIXmediated mitophagy by an interferon regulatory factor homologue of human herpesvirus. Nat. Commun. 10, 3203.   DOI
95 Wang, K., Ma, H., Liu, H., Ye, W., Li, Z., Cheng, L., Zhang, L., Lei, Y., Shen, L., and Zhang, F. (2019a). The glycoprotein and nucleocapsid protein of Hantaviruses manipulate autophagy flux to restrain host innate immune responses. Cell Rep. 27, 2075-2091.e5.   DOI
96 Wang, Y., Serricchio, M., Jauregui, M., Shanbhag, R., Stoltz, T., Di Paolo, C.T., Kim, P.K., and McQuibban, G.A. (2015). Deubiquitinating enzymes regulate PARK2-mediated mitophagy. Autophagy 11, 595-606.   DOI
97 Wang, Z.T., Lu, M.H., Zhang, Y., Ji, W.L., Lei, L., Wang, W., Fang, L.P., Wang, L.W., Yu, F., Wang, J., et al. (2019b). Disrupted-in-schizophrenia-1 protects synaptic plasticity in a transgenic mouse model of Alzheimer's disease as a mitophagy receptor. Aging Cell 18, e12860.   DOI
98 Wei, Y., Chiang, W.C., Sumpter, R., Jr., Mishra, P., and Levine, B. (2017). Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168, 224-238.e10.   DOI
99 Weidberg, H. and Elazar, Z. (2011). TBK1 mediates crosstalk between the innate immune response and autophagy. Sci. Signal. 4, pe39.   DOI
100 Wu, W., Tian, W., Hu, Z., Chen, G., Huang, L., Li, W., Zhang, X., Xue, P., Zhou, C., Liu, L., et al. (2014). ULK1 translocates to mitochondria and phosphorylates FUNDC1 to regulate mitophagy. EMBO Rep. 15, 566-575.   DOI
101 Jing, K., Shin, S., Jeong, S., Kim, S., Song, K.S., Park, J.H., Heo, J.Y., Seo, K.S., Park, S.K., Kweon, G.R., et al. (2014). Docosahexaenoic acid induces the degradation of HPV E6/E7 oncoproteins by activating the ubiquitin-proteasome system. Cell Death Dis. 5, e1524.   DOI
102 Jin, H.S., Suh, H.W., Kim, S.J., and Jo, E.K. (2017a). Mitochondrial control of innate immunity and inflammation. Immune Netw. 17, 77-88.   DOI
103 Jin, S., Tian, S., Luo, M., Xie, W., Liu, T., Duan, T., Wu, Y., and Cui, J. (2017b). Tetherin suppresses type I interferon signaling by targeting MAVS for NDP52-mediated selective autophagic degradation in human cells. Mol. Cell 68, 308-322.e4.   DOI
104 Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., and Youle, R.J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933-942.   DOI
105 Kang, R., Zeng, L., Xie, Y., Yan, Z., Zhou, B., Cao, L., Klionsky, D.J., Tracey, K.J., Li, J., Wang, H., et al. (2016). A novel PINK1- and PARK2-dependent protective neuroimmune pathway in lethal sepsis. Autophagy 12, 2374-2385.   DOI
106 Kawai, T. and Akira, S. (2011). Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637-650.   DOI
107 Cui, J., Chen, Y., Wang, H.Y., and Wang, R.F. (2014). Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum. Vaccin. Immunother. 10, 3270-3285.   DOI
108 Choi, Y.B., Shembade, N., Parvatiyar, K., Balachandran, S., and Harhaj, E.W. (2017). TAX1BP1 restrains virus-induced apoptosis by facilitating itchmediated degradation of the mitochondrial adaptor MAVS. Mol. Cell. Biol. 37, e00422-16.
109 Cloonan, S.M. and Choi, A.M. (2013). Mitochondria: sensors and mediators of innate immune receptor signaling. Curr. Opin. Microbiol. 16, 327-338.   DOI
110 Colonne, P.M., Winchell, C.G. and Voth, D.E. (2016). Hijacking host cell highways: Manipulation of the host actin cytoskeleton by obligate intracellular bacterial pathogens. Front. Cell. Infect. Microbiol. 6, 107.
111 Dalrymple, N.A., Cimica, V., and Mackow, E.R. (2015). Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. mBio 6, e00553-15.
112 Deng, Z., Purtell, K., Lachance, V., Wold, M.S., Chen, S., and Yue, Z. (2017). Autophagy receptors and neurodegenerative diseases. Trends Cell Biol. 27, 491-504.   DOI
113 Ding, B., Zhang, L., Li, Z., Zhong, Y., Tang, Q., Qin, Y., and Chen, M. (2017). The matrix protein of human parainfluenza virus type 3 induces mitophagy that suppresses interferon responses. Cell Host Microbe 21, 538-547.e4.   DOI
114 Xian, H., Yang, S., Jin, S., Zhang, Y. and Cui, J. (2019). LRRC59 modulates type I interferon signaling by restraining the SQSTM1/p62-mediated autophagic degradation of pattern recognition receptor DDX58/RIG-I. Autophagy 2019 May 22 [Epub]. doi: 10.1080/15548627.2019.1615303.
115 Xia, M., Gonzalez, P., Li, C., Meng, G., Jiang, A., Wang, H., Gao, Q., Debatin, K.M., Beltinger, C., and Wei, J. (2014a). Mitophagy enhances oncolytic measles virus replication by mitigating DDX58/RIG-I-like receptor signaling. J. Virol. 88, 5152-5164.   DOI
116 Xia, M., Meng, G., Jiang, A., Chen, A., Dahlhaus, M., Gonzalez, P., Beltinger, C., and Wei, J. (2014b). Mitophagy switches cell death from apoptosis to necrosis in NSCLC cells treated with oncolytic measles virus. Oncotarget 5, 3907-3918.   DOI
117 Kim, M.J., Bae, S.H., Ryu, J.C., Kwon, Y., Oh, J.H., Kwon, J., Moon, J.S., Kim, K., Miyawaki, A., Lee, M.G., et al. (2016). SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12, 1272-1291.   DOI
118 Kim, S.J., Jang, J.Y., Kim, E.J., Cho, E.K., Ahn, D.G., Kim, C., Park, H.S., Jeong, S.W., Lee, S.H., Kim, S.G., et al. (2017). Ginsenoside Rg3 restores hepatitis C virus-induced aberrant mitochondrial dynamics and inhibits virus propagation. Hepatology 66, 758-771.   DOI
119 Dromparis, P. and Michelakis, E.D. (2013). Mitochondria in vascular health and disease. Annu. Rev. Physiol. 75, 95-126.   DOI
120 Du, Y., Duan, T., Feng, Y., Liu, Q., Lin, M., Cui, J., and Wang, R.F. (2018). LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J. 37, 351-366.   DOI
121 Xu, Y., Shen, J., and Ran, Z. (2019). Emerging views of mitophagy in immunity and autoimmune diseases. Autophagy 16, 3-17.
122 Yoo, S.M. and Jung, Y.K. (2018). A molecular approach to mitophagy and mitochondrial dynamics. Mol. Cells 41, 18-26.   DOI
123 Yoshizumi, T., Ichinohe, T., Sasaki, O., Otera, H., Kawabata, S., Mihara, K., and Koshiba, T. (2014). Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat. Commun. 5, 4713.   DOI
124 Youle, R.J. and van der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337, 1062-1065.   DOI
125 Zachari, M., Gudmundsson, S.R., Li, Z., Manifava, M., Shah, R., Smith, M., Stronge, J., Karanasios, E., Piunti, C., Kishi-Itakura, C., et al. (2019). Selective autophagy of mitochondria on a ubiquitin-endoplasmic-reticulum platform. Dev. Cell 50, 627-643.e5.   DOI