References
- West AP, Shadel GS and Ghosh S (2011) Mitochondria in innate immune responses. Nat Rev Immunol 11, 389-402 https://doi.org/10.1038/nri2975
- Mehta MM, Weinberg SE and Chandel NS (2017) Mitochondrial control of immunity: beyond ATP. Nat Rev Immunol 17, 608 https://doi.org/10.1038/nri.2017.66
- Ewbank JJ and Pujol N (2016) Local and long-range activation of innate immunity by infection and damage in C. elegans. Curr Opin Immunol 38, 1-7 https://doi.org/10.1016/j.coi.2015.09.005
- Kim DH and Ewbank JJ (2015) Signaling in the innate immune response. WormBook, 1-51
- Prasai K (2017) Regulation of mitochondrial structure and function by protein import: A current review. Pathophysiology 24, 107-122 https://doi.org/10.1016/j.pathophys.2017.03.001
- Gerwien F, Skrahina V, Kasper L, Hube B and Brunke S (2018) Metals in fungal virulence. FEMS Microbiol Rev 42
- Chandrangsu P, Rensing C and Helmann JD (2017) Metal homeostasis and resistance in bacteria. Nat Rev Microbiol 15, 338-350 https://doi.org/10.1038/nrmicro.2017.15
- Shore DE and Ruvkun G (2013) A Cytoprotective Perspective on Longevity Regulation. Trends Cell Biol 23, 409-420 https://doi.org/10.1016/j.tcb.2013.04.007
- Liu Y, Samuel BS, Breen PC and Ruvkun G (2014) Caenorhabditis elegans pathways that surveil and defend mitochondria. Nature 508, 406-410 https://doi.org/10.1038/nature13204
- Tjahjono E and Kirienko NV (2017) A conserved mitochondrial surveillance pathway is required for defense against Pseudomonas aeruginosa. PLoS Genet 13, e1006876 https://doi.org/10.1371/journal.pgen.1006876
- Kang D, Kirienko DR, Webster P, Fisher AL and Kirienko NV (2018) Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence, 1-41
- Pickles S, Vigie P and Youle RJ (2018) Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol 28, R170-R185 https://doi.org/10.1016/j.cub.2018.01.004
- Mouton-Liger F, Jacoupy M, Corvol J-C and Corti O (2017) PINK1/Parkin-Dependent Mitochondrial Surveillance: From Pleiotropy to Parkinson's Disease. Front Mol Neurosci 10, 120 https://doi.org/10.3389/fnmol.2017.00120
- Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8, e1000298 https://doi.org/10.1371/journal.pbio.1000298
- Yang Y, Gehrke S, Imai Y et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103, 10793-10798 https://doi.org/10.1073/pnas.0602493103
- Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441, 1162-1166 https://doi.org/10.1038/nature04779
- Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441, 1157-1161 https://doi.org/10.1038/nature04788
- Harper JW, Ordureau A and Heo JM (2018) Building and decoding ubiquitin chains for mitophagy. Nat Rev Mol Cell Biol 19, 93-108 https://doi.org/10.1038/nrm.2017.129
- Kirienko NV, Ausubel FM and Ruvkun G (2015) Mitophagy confers resistance to siderophore-mediated killing by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 112, 1821 https://doi.org/10.1073/pnas.1424954112
- Jovaisaite V, Mouchiroud L and Auwerx J (2014) The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217, 137 https://doi.org/10.1242/jeb.090738
- Hetz C and Papa FR (2018) The Unfolded Protein Response and Cell Fate Control. Mol Cell 69, 169-181 https://doi.org/10.1016/j.molcel.2017.06.017
- Powers ET and Balch WE (2013) Diversity in the origins of proteostasis networks - a driver for protein function in evolution. Nat Rev Mol Cell Biol 14, 237 https://doi.org/10.1038/nrm3542
- Shpilka T and Haynes CM (2018) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19, 109-120
-
Frakes AE and Dillin A (2017) The
$UPR^{ER}$ Sensor and Coordinator of Organismal Homeostasis. Mol Cell 66, 761-771 https://doi.org/10.1016/j.molcel.2017.05.031 - Sala AJ, Bott LC and Morimoto RI (2017) Shaping proteostasis at the cellular, tissue, and organismal level. J Cell Biol 216, 1231-1241 https://doi.org/10.1083/jcb.201612111
- Moehle EA, Shen K and Dillin A (2018) Mitochondrial Proteostasis in the Context of Cellular and Organismal Health and Aging. J Biol Chem [Epub ahead of print]
- Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM and Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337, 587-590 https://doi.org/10.1126/science.1223560
- Haynes CM, Yang Y, Blais SP, Neubert TA and Ron D (2010) The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37, 529-540 https://doi.org/10.1016/j.molcel.2010.01.015
- Haynes CM, Petrova K, Benedetti C, Yang Y and Ron D (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13, 467-480 https://doi.org/10.1016/j.devcel.2007.07.016
- Pellegrino MW, Nargund AM, Kirienko NV, Gillis R, Fiorese CJ and Haynes CM (2014) Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516, 414-417 https://doi.org/10.1038/nature13818
- Nargund AM, Fiorese CJ, Pellegrino MW, Deng P and Haynes CM (2015) Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol Cell 58, 123-133 https://doi.org/10.1016/j.molcel.2015.02.008
- Jeong DE, Lee D, Hwang SY et al (2017) Mitochondrial chaperone HSP-60 regulates anti-bacterial immunity via p38 MAP kinase signaling. EMBO J 36, 1046-1065 https://doi.org/10.15252/embj.201694781
- Cohen LB and Troemel ER (2015) Microbial pathogenesis and host defense in the nematode C. elegans. Curr Opin Microbiol 23, 94-101 https://doi.org/10.1016/j.mib.2014.11.009
- Van Raamsdonk JM and Hekimi S (2010) Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship? Antioxid Redox Signal 13, 1911-1953 https://doi.org/10.1089/ars.2010.3215
- Hwang AB and Lee SJ (2011) Regulation of life span by mitochondrial respiration: the HIF-1 and ROS connection. Aging (Albany NY) 3, 304-310
- Hwang AB, Ryu EA, Artan M et al (2014) Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111, E4458-4467 https://doi.org/10.1073/pnas.1411199111
- Lee SJ, Hwang AB and Kenyon C (2010) Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity. Curr Biol 20, 2131-2136 https://doi.org/10.1016/j.cub.2010.10.057
- Yang W and Hekimi S (2010) A Mitochondrial Superoxide Signal Triggers Increased Longevity in Caenorhabditis elegans. PLoS Biol 8, e1000556 https://doi.org/10.1371/journal.pbio.1000556
- Tang H and Pang S (2016) Proline Catabolism Modulates Innate Immunity in Caenorhabditis elegans. Cell Rep 17, 2837-2844 https://doi.org/10.1016/j.celrep.2016.11.038
- Chavez V, Mohri-Shiomi A and Garsin DA (2009) Ce-Duox1/BLI-3 generates reactive oxygen species as a protective innate immune mechanism in Caenorhabditis elegans. Infect Immun 77, 4983-4989 https://doi.org/10.1128/IAI.00627-09
- van der Hoeven R, McCallum KC, Cruz MR and Garsin DA (2011) Ce-Duox1/BLI-3 Generated Reactive Oxygen Species Trigger Protective SKN-1 Activity via p38 MAPK Signaling during Infection in C. elegans. PLoS Pathog 7, e1002453 https://doi.org/10.1371/journal.ppat.1002453
- McCallum KC and Garsin DA (2016) The Role of Reactive Oxygen Species in Modulating the Caenorhabditis elegans Immune Response. PLoS Pathog 12, e1005923 https://doi.org/10.1371/journal.ppat.1005923
- Xu S and Chisholm AD (2014) C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev Cell 31, 48-60 https://doi.org/10.1016/j.devcel.2014.08.002
- Koliaki C and Roden M (2016) Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus. Annu Rev Nutr 36, 337-367 https://doi.org/10.1146/annurev-nutr-071715-050656
- Kauppila TES, Kauppila JHK and Larsson NG (2017) Mammalian Mitochondria and Aging: An Update. Cell Metab 25, 57-71 https://doi.org/10.1016/j.cmet.2016.09.017
- Lima A, Burgstaller J, Sanchez-Nieto JM and Rodriguez TA (2018) The Mitochondria and the Regulation of Cell Fitness During Early Mammalian Development. Curr Top Dev Biol 128, 339-363