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ABSTRACT

IL-9 has been reported to play dual roles in the pathogenesis of autoimmune disorders and 
cancers. The collaboration of IL-9 with microenvironmental factors including the broader 
cytokine milieu and other cellular components may provide important keys to explain its 
conflicting effects in chronic conditions. In this review, we summarize recent findings on the 
cellular sources of, and immunological responders to IL-9, in order to interpret the role of 
IL-9 in the regulation of immune responses. This knowledge will provide new perspectives to 
improve clinical benefits and limit adverse effects of IL-9 when treating pathologic conditions.

Keywords: Interleukin-9; Autoimmune diseases; Allergy; Cancer, Adaptive immunity;  
Innate immunity

INTRODUCTION

IL-9, initially termed P40, is a single chain glycoprotein with molecular weight between 32 
and 39 kDa (1). Without N-linked glycosylation IL-9 is 14 kDa. IL-9 was first found to support 
the long-term growth of antigen-independent Th cell lines (1). Unlike other growth factors of 
T cells, IL-9 did not stimulate the proliferation of cytotoxic T cells (Tc) (1). The Il9 gene loci of 
both human and mouse shares 55% amino acid homology at the protein level (2). Intriguingly, 
murine IL-9 can function on human cells, but human IL-9 is inactive on mouse cells. The IL-9 
receptor complex consists of the cytokine-specific IL-9 receptor α-chain (IL-9Rα) and the 
γc-chain (2) and therefore IL-9 is a member of the common γc receptor family which includes 
IL-2, IL-4, IL-7, IL-15, and IL-21 (3). Binding of IL-9 to the ligand-binding subunit IL-9Rα results 
in formation of the IL-9R heterocomplex, which undergoes a conformational change to allow 
binding of JAK1 and JAK3. Phosphorylated JAK1 and JAK3 then mediate the phosphorylation 
of receptor tyrosine residues (4). In turn, the phosphorylation of tyrosine residues induces 
activation of transcription factors belonging to the STAT family, insulin receptor substrates 
(IRSs), and MAP kinase pathway (4). The activation of STAT family including STAT1, STAT3, 
and/or STAT5 is crucial for IL-9 to mediate its anti-apoptotic and growth regulatory effects (4). 
In various hematopoietic cells, JAK kinases also mediate the phosphorylation of IRS1/2 which 
in turn, activates PI3K signaling pathways to induce cell proliferation and prevent caspase-
mediated apoptosis (4,5). The MAP kinase pathway also contributes to the extent IL-9 signaling 
in several lymphoid and hematopoietic cells lines (6).
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Although the innate and adaptive components of the immune system are 2 arms of the 
host responses, they work together intimately to induce effective immune responses. 
Proinflammatory cytokines play important roles in the interaction between innate and 
adaptive immune cells. IL-9 has been reported to induce the development of a number 
of autoimmune diseases such as inflammatory bowel diseases (IBD), multiple sclerosis 
(MS), psoriasis, rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) (7-9). 
However, there are also somewhat conflicting reports in which IL-9 was found to suppress 
experimental autoimmune encephalomyelitis (EAE) in mice (10,11). IL-9 contributes to 
the pathophysiology of allergic diseases like food allergy, dermatitis or asthma through its 
autocrine or paracrine effect on T cells, B cells, innate lymphoid cells, mast cells, eosinophils, 
and neutrophils (12-17). Besides the gathering evidence of proinflammatory functions of 
IL-9, early studies also showed the effect of IL-9 in inducing immune tolerance in tolerant 
allografts and in inflammatory disease models (18,19). In the context of cancer, many studies 
have reported pro-tumor effects of IL-9 on hematological tumors and solid tumors (20,21). 
Nevertheless, more recent evidence suggests IL-9 and IL-9-producing cells may have anti-
tumor effects particularly in melanoma, and these data have implied a role for anti-cancer 
immune responses (20,21). Therefore, the functional role of IL-9 in the pathology of various 
diseases remains controversial. The apparently conflicting outcomes in different systems 
implies that it is necessary to clarify the pleiotropic immunological functions of IL-9 in 
immune-originating cells such as hematopoietic progenitor, myeloid and lymphoid cells 
but also in non-immune cells such as airway smooth muscle and epithelial cells. Noelle and 
Nowak (3) have summarized the cellular sources and immune functions of IL-9. However, 
with a plethora of new findings about the sources and immunological functions of IL-9, a 
fresh summarizing and detailed interpretation may be very useful. In this review, we focus 
on clarifying the immune-originated sources of IL-9 and the feedback loop between IL-9 
producers and IL-9 responders.

IL-9 ON ADAPTIVE IMMUNE CELLS

Th9 cells
Th9 cells are the subset of Th cells specialized for secreting IL-9. Classic Th9 cells become 
polarized after originating from naïve T cells, Th2, Th17 or Treg cells in the presence of 
TGF-β and IL-4 (22-25). TGF-β induces PU.1, an ETS-family transcription factor, expression 
while IL-4 triggers the STAT6 pathway followed by induction of IRF4 transcription factor. 
PU.1 and IRF4 together promote Th9 polarization (24). ETV5 transcription factor, another 
member of the ETS family, can also induce IL-9 production in Th9 cells in a PU.1 independent 
manner (24,26). In addition to IL-9, Th9 cells also secrete IL-10 and IL-21 (27) (Fig. 1). The 
IL-9 secretory capability of Th9 cells does not last for long. These cells lose IL-9 expression 
gradually during several rounds of differentiation, due to activation of the STAT3 pathway 
(28). Notably, treatment with retinoic acid, IFN-γ or IL-27 all inhibited IL-9 production from 
Th9 cells (29,30). Recently, an alternative pathway was reported, in which IL-1β+IL-4 could 
polarize Th9 from naïve T cells through NF-κB signaling and induce the expression of IL-9 
and IL-10 at a comparable level to that induced by the classical pathway (31). In addition, an 
agonistic antibody of GITR, a TNF receptor family protein, enhanced the differentiation to 
Th9 cells via TRAF6 and NF-κB pathway in an IL-4 dependent manner (32). Whether IL-9 
exerts direct effects on Th9 cell development is still elusive. However, absence of IL-9R 
signaling in Il9R−/− mice significantly reduced the frequency of Th9 cells in vivo and in vitro 
compared to the control groups (33).
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Th17 cells
Th17 cells are defined as a subset of T helper cells releasing IL-17A (34). Although secretion 
of IL-9 is mainly attributed to the Th9 subset, IL-9 can also be secreted by Th17 (35-37). The 
production of IL-9 by Th17 cells is positively regulated by combinations of TGF-β with any 
of IL-1β, IL-6, IL-21, or IL-23 (35,37) and is negatively regulated by IL-23 alone (36) (Fig. 1). 
Recently, TL1A, a member of the TNF superfamily, was reported as a new stimulator for 
IL-17 secretion from memory CD4+ T cells (38). TL1A alone or together with IL-6/TGF-β can 
trigger memory Th17 to release a large amount of IL-17, IL-22, IFN-γ, and IL-9 (38) (Fig. 1). 
The secretion of IL-22 by TL1A-stimulated Th17 cells was dependent on the IL-9 signaling 
pathway since treatment with anti-IL-9R antibody inhibited IL-22 production (38). In some 
allergic conditions, in addition to IL-9, Th17 cells also expressed IL-4, IL-5, IL-8, IL-13, IL-21, 
and IL-22 (39). Notably, IL-9 secretion depends on the differentiation stage of Th17 cells. 
Newly polarized Th17 from naïve CD4+ T cells did not express IL-9. The capability for IL-9 
expression was acquired after several rounds of polarization under Th17-polarizing conditions 
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Figure 1. Conditions in which IL-9 is produced by immune cells. 
IL-9 can be produced by cellular components from both the adaptive and innate immune systems. After stimulation by the indicated conditions, Th9, Th17, IL-9 
producing CD8+ T (Tc9), NKT cells, ILCs, MCs, and γδ T cells express IL-9 at high levels (+++), while Treg and basophils produce IL-9 at moderate levels (++). 
Memory B cells and neutrophils produce IL-9 at a low level (+). IL-9 expression by TFH cells and eosinophils have not yet been analyzed by ELISA. Cytokines co-
expressed with IL-9 after stimulation are listed.
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in vitro (35). Memory Th17 cells play an important part in IL-9 release (35,38). IFN-γ or IL-27 
supplementation significantly inhibited IL-9, IL-17 and ROR-γt expression in Th17 cells (30).

As more than a cytokine secreted by Th17 cells, IL-9 plays important roles in Th17 
differentiation and proliferation through autocrine and paracrine stimulation. Combinations 
of IL-9 and TGF-β differentiated naïve CD4+ T cells into Th17 cells to express IL-17 through 
STAT1 and STAT3 activation in both human and mouse (8,36,40) (Fig. 2). Treatment with 
IL-9 neutralizing antibody partially attenuated the secretion of IL-17 from Th17 cells that were 
polarized by treatment with IL-6 or IL-21 in the presence of TGF-β (36). Exogenous IL-9 failed 
to enhance IL-17 production in CD4+ T cells from STAT1−/− or STAT3−/− mice (8).

The close relationship between IL-9 and Th17 cells has been notably revealed in autoimmune 
disease. Myelin-specific Th1 and/or Th17 cells are known to cause EAE through damage 
to the blood-brain barrier (41). Mechanistically, IL-9 promoted Th17 migration into the 
CNS by inducing CCL-20 from astrocytes (25) while IL-9 neutralization or IL-9R deficiency 
reduced Th17 migration and attenuated the EAE phenotype (25,42). Furthermore, Il9−/− mice 
developed significantly less severe EAE, accompanied by lower levels of IL-17 (8). In the EAE 
resistant Il9−/− mice, the expression of C-C chemokine receptors including CCR2, CCR5 and 
CCR6 were reduced in memory/activated T cells and that may have contributed to the reduced 
migration of Th17 cells into CNS (8). IL-9 secretion by memory Th17 cells was also shown to 
be increased in patients with autoimmune diabetes (35). In K5.hTGF-β1 transgenic mice, a 
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Figure 2. Proposed model of crosstalk between producers and immune targets of IL-9. 
IL-9 can exert various effects on both adaptive and innate immune cells. These effects include stimulating the differentiation and proliferation of Th17, promoting 
suppressive functions of Treg cells, enhancing cytotoxicity of cytotoxic T lymphocytes (Tc, CTL), inducing activation and accumulation of MCs, activating and 
maintaining ILCs, activating DCs, regulating memory B cell development and antibody recall response. After being stimulated by IL-9, IL-9 responders secrete 
cytokines which, in turn, exert their biological effects on IL-9 producing cells. There are also significant autocrine effects of IL-9 in Th17, NKT, MC, ILC and 
memory B cells. Indirect effects of IL-9 on Th1 and Th2 are not included in this illustration.
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psoriasis model, intradermal IL-9 injection triggered Th17-related inflammation and further 
treatment with anti-IL-17 antibody reduced the inflammation (40). In psoriasis patients, IL-9R 
expression was shown to be elevated in samples of lesional skin, and IL-9 treatment increased 
the number of Th17 cells and hence IL-17 secretion more in peripheral blood mononuclear 
cells (PBMCs) from psoriasis patients than those from normal healthy controls (40). In the 
cancer context, subcutaneous implantation of IL-9 expressing CT26 colon cancer cells clearly 
showed elevated levels of IL-17 in both blood serum and tumor masses (43). In this system, 
although IL-9 definitely reduced colon cancer growth, the survival of mice was not improved. 
It was proposed that IL-17-related inflammation may counteract prolonged survival of mice 
injected with IL-9 secreting cancer cells. In another study, deficiencies in Th17 pathways 
(ROR-γ−/− or IL-23−/−) enhanced IL-9 producing T cells, and this was accompanied by delays in 
B16F10 tumor growth in mice. Further analysis of tumor infiltrating lymphocytes confirmed 
the anti-tumor effect of tumor-antigen-specific Th9 in this system (44).

Tregs
The role of Tregs has been extensively investigated in the areas of immune tolerance and graft 
rejection. Two classes of Treg exist: natural Treg (nTreg, CD4+CD25+Foxp3+) originating from 
the thymus while induced Treg (iTreg, CD4+CD25−) are derived from mature T cells in the 
peripheral system (45,46). Both nTreg and iTreg cells are known to produce IL-9 (19) (Fig. 1). 
The positive role of IL-9 on the immunosuppressive function of Tregs was first reported by 
Noelle and colleagues (19). They found that both Tregs and mast cells (MCs) play important 
roles in the induction of immunosuppression in long-lived allografts. Given that IL-9 is 
highly expressed by Tregs and plays dominant roles in activation and accumulation of MCs, 
they proposed IL-9 as a key cytokine secreted from Tregs that functions to recruit and activate 
MCs for inducing local tolerance. Neutralizing IL-9 greatly accelerates allograft rejection in 
Rag−/− mice adoptively transferred with Tc and Tregs, and abolished the protective effect of 
adoptive Treg therapy in mice suffering acute nephrotoxic serum nephritis (18,19,36). IL-9 
is also a key mediator of Tregs and MCs in suppressing the immune system in a lymphoma 
model. Inhibition of IL-9-signaling down-regulated expression of Treg-related gene (Foxp3), 
mast cell-related genes (CD117, Mcpt1, Mcpt5) and monocyte-related gene (Fcer1a) in tumor 
draining lymph nodes, and delayed tumor growth in mice (47,48). In an EAE model, the 
absence of IL-9 signaling in Il9R−/− mice weakened the suppressive activity of nTregs in vivo and 
worsened symptoms of EAE compared to wild type mice (36).

Notably, IL-9 emerged as an important cytokine to balance the Th9/Th17/Treg cell 
populations. IL-9 from Th9 promotes the expansion of Th17, and Th17-derived IL-21 is 
involved in the differentiation of Th9 (Fig. 2). STAT3 and STAT5, (IL-9 downstream signaling 
factors), play opposing roles in regulating the polarization of Th17 and Treg (36,49,50). 
Moreover, in an IL-4 rich setting, Tregs can be converted to Th9 phenotype (23).

Th1 and Th2 cells
Th1 is known to express very low IL-9R (42). However, IL-9 can indirectly regulate Th1 
polarization through modulating the expression of other cytokines, such as IL-12 and IFN-γ, 
which are crucial stimulatory cytokines for initiating Th1 polarization (51). Exogenous 
IL-9 reduced IL-12 and IFN-γ expression from PBMCs leading to negative effects on Th1 
polarization (15,52). The serum level of IFN-γ was significantly elevated in Il9−/− mice 
compared with wild type mice (15) and ectopic implantation of IL-9-expressing tumor cells 
reduced IFN-γ concentration in both blood and tumor masses (43). Th2 cells were found to 
express IL-9R at levels as high as Th17 cells (42), but there is little evidence for direct effects 
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of IL-9 on Th2 cells. However, IL-9 can support Th2 polarization by its ability to regulate 
the production of IL-4. Absence of IL-9R signaling in Il9R−/− mice significantly reduced 
the frequency of Th2 cells induced by Aspergillus fumigatus infection (33). The serum 
concentration of IL-4 in Il9−/− mice is lower than wild type and treatment with IL-9 induced 
IL-4 secretion in PBMCs (15,52).

Cytotoxic CD8+ T cells
Tc9 cells are defined as IL-9 producing cytotoxic CD8+ T cells, which differentiate from 
naïve CD8+ cells under Th9-polarizing conditions, such as in the presence of IL-4 and TGF-β 
(53,54). Tc9 differentiation can also be prompted by dendritic cells (DCs) in an IL-33 rich 
environment or by resident CXCR1+ DCs (55,56). Unlike conventional cytotoxic CD8+ T cells 
(Tc1 cells), Tc9 cells express high levels of transcription factors PU.1 and IRF4, and low levels 
of Eomes and Tbx21 (53,54). In cytokine profile, Tc9 expresses high levels of IL-2, IL-9, IL-10 
and low levels of IFN-γ, granzyme and perforin (53-55) (Fig. 1). Therefore, Tc9 cells were 
expected to have lower cytolytic activity than Tc1. However, Tc9 cells were less exhausted and 
converted to an IFN-γ positive Tc1-like phenotype after up to 14 days of the adoptive transfer. 
As a consequence, adoptive transfer of tumor specific Tc9 generated cytolytic activities 2-fold 
greater than Tc1 cells in experiments using B16 melanoma (53). Tc9 consistently showed 
significantly lower levels of exhaustion markers including KLRG-1, PD-1, LAG-3 and 2B4 
(53,55,57). Treatment with IL-9 up-regulated the expression of IL-9 and IL-9R in Tc9 cells 
but not in other CD8+ T cells (57). In other cases, Tc9 cells promoted Th2-mediated airway 
inflammation in allergic airway disease, and Foxp3 or cholesterol derivatives inhibited IL-9 
production in Tc9 cells (54,58).

The anti-tumor effects of Th9 are primarily attributable to the immunostimulatory function 
of IL-9 on cytotoxic CD8+ T cells as has been shown against breast cancer, colorectal cancer, 
and melanoma. The CD8+ population of T cells was expanded in the presence of Th9 cells 
and the addition of anti-IL-9 antibodies partially blocked CD8+ T cell-mediated cytotoxicity 
(27,59). Blocking IL-9 signaling by neutralizing antibody reduced the production of granzyme 
B and perforin by CD8+ T cells but the same did not occur in NK cells. And vice versa, 
treatment with recombinant IL-9 accelerated cytotoxicity of tumor specific CD8+ T cells in 
mice by inducing granzyme and perforin expression (60). In addition, IL-9 can stimulate 
tumor specific CTL responses by enhancing the function of DCs (32).

B cells
IL-9R was found to be expressed in B cells of follicles, the marginal zone and germinal center 
of spleen, and is especially induced in memory B cells (16,61,62). It is also expressed in 
diffuse large B cell lymphoma (DLBCL) cell lines such as LY1 and LY8 (63). IL-9R expression 
was stimulated by CD40L alone, or in combination with BAFF, and inhibited by treatment 
with IL-4 or IL-21 (16,62). IL-9 is also selectively expressed in memory B cells, and the 
autocrine or parcrine manner of IL-9 signaling is important for memory B cell develoment 
(62). The first evidence of the effects of IL-9 on B cells was obtained in experiments using 
IL-9 transgenic mice. In those mice, the serum concentrations of IgM, IgG1, IgG2a, IgG2b, 
IgG3, and IgE were enhanced after immunization with antigens, compared with control 
mice (64). The level of IgG antibodies were even higher after secondary immunization (64). 
Treatment with exogenous IL-9 promoted the proliferation of DLBCL cells and protected 
them from induced apoptosis (63). In tonsillar B cells, IL-9 triggered IL-4-mediated IgE 
production through the activation of STAT3, and STAT5 (16).
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The mechanisms underlying the generation and activation of memory B cells is necessary 
to completely understand the humoral immune response. Wang et al. (61) used Il9R−/− mice 
to show that IL-9 is required for germinal center development of memory B cells and also 
found that follicular helper T (TFH) cells supply IL-9 for optimum development of memory 
B cells (61) (Fig. 2). Takatsuka et al. (62) also reported IL-9 promotes the proliferation and 
differentiation of ex vivo-cultured B cells by inducing phosphorylation of STAT3 and STAT5. 
Furthermore, they showed that IL-9-IL-9R signaling may initiate memory B cell develoment. 
Treatment with IL-9 significantly downregulated ICOSL, a co-stimulatory molecule for 
germinal center formation, on memory B cells, implying that the cytokine facilitated plasma 
cell-differentiation from memory B cells rather than keeping them in germinal centers (62). 
Although the primary IgG1 response was not affected by the lack of IL-9R, the secondary 
IgG1 and IgG2b responses following the booster dose was diminished in Il9R−/− mice (62).

IL-9 ON INNATE IMMUNE CELLS

DCs
DCs themselves may not secrete IL-9 but can function to either stimulate or inhibit T cells with 
respect to IL-9 secretion. Dectin-1-activated DCs induced proliferation and IL-9 expression 
of Th9 cells via IL-33 signaling pathway (65-67). On the other hand, retinoic acid-monocyte-
derived DC inhibited IL-9 production from Th9 and Th17 cells (29). The expression of IL-9R 
was strongly detected on the surface of bone marrow derived dendritic cells (BMDCs), myeloid 
DCs, and plasmacytoid DCs (12,68). Treatment with IL-9 did not alter the proliferation of 
BMDCs, but it stimulated the activation of BMDCs by inducing phosphorylation of JAK1, JAK3, 
STAT3, and NF-κB (12,69) (Fig. 2). After stimulation with IL-9, activated BMDCs expressed 
more surface CD86 and MHC class II molecules and secreted more TNF-α, IL-1β, and IL-6 
(12,70). In IL-9 transgenic mice, IL-9-activated DCs can stimulate proliferation of CD4+ T 
cells and induce differentiation into Th2 subclass. Co-culturing of IL-9-activated BMDCs and 
naïve T cells led to an inhibition of Th1 differentiation (IFN-γ+CD4+ T cells) and facilitated Th2 
polarization (IL-4+GATA3+CD4+ T cells). IL-9-activated BMDCs did not alter the frequency of 
Th17 and Tregs in vitro (12,70). In contrast, in an EAE model, splenic DC from Il9−/− mice were 
found to express more IL-1β, IL-6, IL-23A and less IL-27, and they induced naïve CD4+ T cells to 
produce more IFN-γ compared with control mice (10).

Innate lymphoid cells (ILCs)
ILCs are a heterogeneous population of lymphocytes lacking antigen specific B or T cell 
receptors (71). Based on expression profiles of transcription factors and cytokines, ILCs 
are categorized into three groups, ILC1, ILC2 and ILC3. Since ILCs are tissue resident cells, 
they act early in the immune response and process target antigens to stimulate T cells 
(72). Intriguingly, ILCs, especially type 2 (ILC2), have been shown to be a major producer 
of IL-9 (33,73-75). In mice, IL-9-expressing ILCs far outnumbered IL-9 expressing T cells 
and produced more IL-9 than T cell counterparts at the cellular level (75). However, resting 
ILCs did not express IL-9, but only started to produce it after being treated with IL-2 or after 
prolonged stimulation with any of HMGB1, papain, or TSLP + IL-33 (12,73,74). IL-2 is an 
essential signal for IL-9 production by ILCs. The main IL-2 sources for eliciting IL-9 expression 
by ILCs are adaptive immune cells (Fig. 2). In fact, IL-9 concentration was dramatically 
reduced in the lungs of Rag1−/− mice compared to those from wild type mice and declined 
completely in Rag2−/−−/−Il2Rg mice (73). IL-9 production from Rag1−/− ILCs was recovered after 
overnight stimulation with IL-2, but this did not occur in Rag2−/−−/−Il2Rg ILCs (73). Notably, 
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the expression of IL-9 from stimulated ILCs did not last for long. Around 24 hour after 
stimulation, the level of IL-9 expression dropped significantly and those cells began to 
express IL-5, IL-6, and IL-13 instead (73) (Fig. 1). Production of IL-9 by activated ILCs required 
transcription factor IRF4 (74). Irf4−/− ILC2 cells did not express IL-9, and further, downstream 
cytokines, IL-5 and IL-13, were also not produced. Expression of IL-5 and IL-13 by Irf4−/− ILC2 
were however rescued by treatment with IL-9 (74). ST2, suppressor of tumorigenicity 2, is an 
IL-33 receptor and a negative regulator of IL-9 production in ILC2s. The number of IL-9+ ILC2 
cells and the secretion level of IL-9 were increased in ST2−/− mice (13).

Both naïve and activated ILCs express high levels of IL-9R (73-77) and early exposure to IL-9 
is important for rapid and complete activation of effector ILCs (Fig. 2). The total number of 
CD25+Sca-1+ILCs, and GATA3+ ILC2s, were significantly attenuated in IL-9 signaling deficient 
mice (73,75). Implantation of bone marrow from wild type or Il9R−/− mice into irradiated 
CD45.1+Rag1−/− mice revealed that the survival of IL-5+IL-13+ ILC2s depends on their natural 
ability to respond to IL-9 (75). Based on these lines of evidence, autocrine or paracrine 
signaling of IL-9 may play crucial roles in maintenance and expansion of ILC2s (Fig.2). 
IL-9 exerted direct effects on protecting ILC2s from apoptotic cell death by upregulation of 
survival factor BCL3 (75). IL-9 also exerted its indirect effect on promoting the expansion of 
IL-25+ ILC2s by inducing IL-2 expression in MCs (33,77,78) (Fig.2).

Mast cells
Mast cells (MCs) can be stimulated by Ca2+-ionophore ionomycin, cross-linkage of antigen 
specific IgE (IgE/Ag), IL-33+GM-CSF, IL-33+IL3, or LPS+IL-3 (Fig. 1). These activated MCs 
secrete large amounts of IL-9 (79,80). Together with IL-9, the up-regulated production of 
several Th2-related cytokines including IL-3, IL-5, IL-6, IL-10 and TNF were observed in 
MCs activated by ionomycin or IgE/Ag (79,81). Furthermore, the presence of IL-1 alone or 
in combination with IL-10 or stem cell factor (SCF), significantly increased IL-9 production 
from activated MCs by enhancing the stability of IL-9 mRNA (79). Activated MCs expressed 
high amount of endogenous IL-10 which, in turn, exerted autocrine effects on MCs to amplify 
IL-9 production (79) (Fig. 2). STAT5 and GATA1 transcription factors are necessary for IL-9 
production in MCs (82). The secretion of IL-9 from activated MCs is partially inhibited by 
treatment with SGC-CBP300, a bromodomain inhibitor (80).

MCs are a major target group of IL-9 as they express significant levels of IL-9R (42). 
Hematopoietic cells including activated Tregs, Th9, ILC2, and NKT cells are the main sources 
of IL-9 for in situ accumulation of MCs (19,83,84) (Fig 2). Recent in vivo evidence suggests 
that IL-9 serves as a chemoattractant to recruit activated MCs. In ST2−/− mice, elevations 
in IL-9 led to the accumulation of intraepithelial MCs and enhancement of their effector 
function (13). In IL-9 or IL-9R deficient mice, the number of MCs and MC precursors in 
bone marrow, peritoneal cavity, lung and intestine were significantly reduced compared to 
control mice (33,80,84,85). In IL9∆CNS-25 mice lacking the CNS-25 element (which is 25 kb 
upstream from the IL9 gene, and has IL9-enhancer characteristics), IL-9 production was 
significantly impaired and the functioning of MCs was reduced, as evidenced by a reduced 
temperature drop and lower plasma IL-6 concentration, in response to IgE and BSA injection 
(80). Blockage of IL-9 signaling by anti-IL-9 antibody decreased MC infiltration into the 
central nervous system in EAE mice (86). Furthermore, IL-9 signaling plays key roles in 
the activation of MCs (Fig 2). Treatment with IL-9 significantly increased production of 
IL-1β, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-13, IL-17, TGF-β, VEGF and MIF by MCs (33,87-
89). In IL-9 or IL-9R deficient mice, the activation of MCs was attenuated and the effector 
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function of MCs characterized by mastocytosis was diminished (17,85). MCs play a vital role 
in elimination of Strongyloides ratti in mice as IL-9R deficiency increased intestinal parasite 
burden and prolonged the infection (83). The serum concentrations of MCP1, a mast cell 
degranulation marker, and IgE were drastically reduced in Il9R−/− mice compared with control 
mice after Strongyloides ratti-infection (83). In addition, IL-9 plays key roles in MC-mediated 
allergic responses. For example, in OVA-sensitized mice, food allergy was induced by the 
recruitment of IL-9 producing MCs in the intestinal area and in lung (84,85,90). In contrast, 
the development of food allergy was inhibited in OVA-sensitized Il9−/− or Il9R−/− mice (85).

Notably, there is no direct evidence indicating that IL-9 alone can promote proliferation of 
MCs in vitro since weakening of IL-9 signaling did not change the number of MCs in IL9∆CNS-25 
mice (80). However, synergistic activity resulting from combined IL-9 and SCF treatment 
promoted mast cell growth in vitro (91).

NKT cells
Invariant NKT cells (iNKT), a major subset of NKT cells, are a CD1d-restricted T cell 
population. Naïve iNKT cells do not express IL-9 (92), but iNKT cells stimulated with a 
combination of IL-2, TGF-β and IL-4, produced large amounts of IL-9 under control of IRF4 
transcription factor (84,92) (Fig. 1). In addition, NKT cells secreting large amounts of IL-9 were 
detected in biopsies from 8 out of 12 patients suffering nasal NKT lymphomas (93). IL-9 and IL-
9R were also found to be expressed by nasal NKT lymphoma cell lines, SNK-6 and SNT-8, and 
accordingly, IL-9 is an autocrine growth factor for nasal NKT lymphoma cell lines. Treatment 
with IL-9 stimulated the in vitro proliferation of SNK-6 and SNT-8 cells and neutralization with 
anti-IL-9 antibody lowered the in vitro viability of those cell lines (93). IL-9-secreted from iNKT 
cells is also known for its role in allergic inflammation through MC accumulation (Fig. 2). 
Intratracheal adoptive transfer of IL-9-secreting iNKT cells led to recruitment of eosinophils 
and MCs in the airways of recipient mice. The accumulation of eosinophils and MCs was 
abolished by IL-9 signaling neutralization with anti-IL-9 antibody (92). Interestingly, the lack 
of iNKT cells also reduced the number of pulmonary MCs by up to 65% in CD1d-deficient mice 
with allergic airway inflammation (84). Anti-CD1d treatment of IL-9-deficient mice or anti-IL-9 
treatment of CD1d-deficient mice did not further lessen the impairment of MC recruitment, 
implicating iNKT cells as an important source of IL-9 for MC accumulation.

γδ T cells, granulocytes, and macrophages
Vγ9Vδ2 T cells are the dominant γδ T-cell subset in human peripheral blood and the peripheral 
blood Vγ9Vδ2 T cell is one of the major sources of IL-9 in humans (94). Vγ9Vδ2 T cells 
secreted large amount of IL-9 after in vitro stimulation with a combination of phosphoantigen 
(bromohydrin pyrophosphate, BrHPP), IL-2, TGF-β and IL-15 (94) (Fig. 1). The expression of 
IL-9R on Vγ9Vδ2 T cells was significantly increased in patients with psoriatic arthritis (PsA) 
inflammatory disease. Treatment with IL-9 strongly promoted expression of IL-17 and IFN-γ 
from Vγ9Vδ2 T cells in PsA patients (95).

Neutrophils, eosinophils and basophils can express small amounts of IL-9 under some 
circumstances (14,80,82,96) (Fig. 1). Although the effect of IL-9 on eosinophils has not been 
clarified yet, the significant reduction of eosinophils in lungs of Il9R−/− mice in response to 
Nippostrongylus brasiliensis infection implied a potential function for IL-9 in this subset of 
immune cells (75). Monocytes and macrophages were found to express high levels of IL-9R 
(12,68). IL-9 treatment induced phosphorylation of STAT1, 3, and 5 in blood monocytes 
and reduced the expression of activation markers including CD45, CD11b, CD68 and CD14 
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in inflammatory macrophages (68). In the context of B16 lung metastasis, IL-9 stimulated 
the accumulation of M1-like macrophages in lung and induced cytotoxic function of the 
macrophages in vitro (97).

CONCLUSION AND FUTURE PERSPECTIVES

IL-9 is produced by a wide variety of immune cells including CD4+ T cells, CD8+ T cells, 
B cells, NKT cells, ILCs, MCs, γδ T cells, and granulocytes. Among them, the primary 
producers of IL-9 seem to be Th9, ILC2, and MCs (Fig. 1). Under conditions stimulatory for 
IL-9 secretion, almost all of the IL-9 producers also expressed either IL-5, IL-13 and/or IL-10. 
These co-expressing cytokines may contribute to shifting the nature of immune responses 
to type 2 or to immune suppression. In our proposed model of Fig. 2, IL-9 can exert various 
effects on both adaptive and innate immune cells. These effects include 1) stimulating the 
differentiation and proliferation of Th17 cells, 2) promoting immune suppressive functions of 
Tregs, 3) enhancing cytotoxicity of Tc cells, 4) inducing activation and accumulation of MCs, 
5) activating and maintaining ILCs, 6) activating DCs toward type 2 responses, 7) promoting 
allergic inflammation of NKT cells, and 8) regulating memory B cell development. After 
being stimulated by IL-9, the immune cells secrete cytokines that, in turn, may also act as 
feedback responses to promote the expansion of IL-9-producing cells (Fig. 2). For example, 
IL-2 produced from MC can stimulate the polarization and proliferation of various types 
of effector cells including Th9, Th17, Treg, NKT cells and ILC2. In addition, MC-, ILC2-, or 
DC-derived IL-1β, IL-6 or TGF-β are important for the development of Th17 cells (78,98,99). 
Remarkably, IL-9 exhibits important roles in maintaining the balance of Th9, Th17 and 
Tregs. IL-9 secreted from Th9 can promote the expansion of Th17 cells and enhance the 
immunosuppressive function of Tregs. Furthermore, Th17-derived IL-21 and Treg-derived 
IL-4 are involved in the differentiation of Th9. There are also significant autocrine effects 
of IL-9 in Th17, NKT, MC, ILC and memory B cells. Collectively, we can conclude that the 
crosstalk between the producers and immune targets of IL-9 derive various cytokine networks 
and regulate immune cell activities.

Recent studies on IL-9 have significantly expanded our understanding of its effects on diverse 
immune cells and particularly on memory B cells, Tc cells, DCs, and ILCs. Further dissection 
of biological function mediated by IL-9 on Th2, Treg, NKTs, γδ T-cells, granulocytes and 
macrophages will provide a more complete view on how IL-9 exerts its anti-inflammatory 
or pro-inflammatory function in a given physiological setting. In particular, the specific 
conditions for, and the clinical consequences of, the conversions between the IL-9-producing 
CD4+ T cell subsets need to be further clarified. In chronic disease contexts, IL-9 exerts either 
pro-inflammatory or anti-inflammatory effects depending on the overall cytokine milieu 
and other cellular components in the microenvironment. Further studies are required to 
delineate the cooperative interactions between IL-9 and microenvironmental factors in the 
pathogenesis of autoimmune disease, allergy, and cancer.
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