• Title/Summary/Keyword: cellular antioxidant activity

Search Result 383, Processing Time 0.026 seconds

Examination of the Antioxidant Potential of Pycnogenol under Conditions of Oxidative Stress in Escherichia coli Mutants Deficient in HP1 and Superoxide Dismutase Activities

  • Youm, Jeong-A;Kim, Young-Gon
    • Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Pycnogenol (PYC) is believed to have potential as a therapeutic agent against free radical-mediated oxidative stress. It is important, therefore, to understand the interactions between PYC and cellular defenses against oxidative stress. Toward this end, we analyzed the survival rates on the gene expression responses of E. coli sod katG mutants to PYC after pre-treatment of PQ or H$_2$O$_2$-mediated stress under aerobic conditions. We identified SOD induced by PYC, but not HP1 in sod hate mutants. A striking result was the PYC induction of SOD with antioxidant property in single katG mutant cells, particularly MnSOD and CuZnSOD. These inductions were further increased with oxidative stress, while HP1 was not induced in these conditions. The effects of pycnogenol treatment on these cells depend in part on its concentration on the stress response. Protective effects of PYC exposure which affected gene expression in cells were consistent with cell survival rates. Our results demonstrate that pycnogenol may alter the stress response gene expression in a specific manner such as SOXRS because PYC induction of single mutant only worked under increased PQ stress. All together our data indicate that SOD activity is essential for the cellular defense against PQ-mediated oxidative stress, suggesting that PYC may not be effective as an antioxidant in only oxidative stress conditions. On the other hand, it was expected that PYC may play a role as a pro-oxidant and if it is available for use, it should be evaluated carefully.

Antioxidant and DNA Damage Protective Activities of Freeze-Dried Blue Mussel (Mytilus edulis) (동결건조 진주담치 추출물의 항산화 및 DNA 손상 보호 활성)

  • Lee, Seon Woo;Choi, Mi-Joo;Kim, Si-Kyung;Lee, Seung-Cheol;Park, Eunju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.12
    • /
    • pp.1801-1807
    • /
    • 2014
  • Blue mussels (Mytilus edulis) are widely distributed among the world's oceans in various habitats. The purpose of this study was to investigate the effects of freeze-drying on the antioxidant and antigenotoxic activities of blue mussels collected in the Gyeongnam coast area of Korea. Raw (RM) and freeze-dried blue mussel flesh (FRM) were extracted with ethanol, methanol, and water. Antioxidant activities were evaluated on the basis of DPPH radical scavenging activity, oxygen radical absorbance capacity (ORAC), cellular antioxidant capacity (CAC), and antigenotoxic activity (comet assay). Except for the water extract, RM and FRM showed DPPH radical scavenging activities, which increased upon freeze-drying in MeOH extract. The highest ORAC value was observed in water extract of RM and MeOH extract of FRM. CAC was protected against AAPH-induced oxidative stress in HepG2 cells by both RM and FRM extracts. Freeze-drying lowered ORAC value of water extract, whereas it increased CAC activity, suggesting that antioxidant activities varied according to the generated radicals. All extracts from RM and FRM showed antigenotoxic activities by reducing $H_2O_2$-induced DNA damage in human leukocytes. Freeze-drying had no effect on antigenotoxicity of blue mussels. Taken together, these results indicate that blue mussels possess antioxidant and antigenotoxic properties, and freeze-drying might be a useful processing method for blue mussels to retain their maximum physiological potential as a functional food.

Effects of Cordyceps militaris on Immune Activity (밀리타리스 동충하초(Cordyceps militaris)의 면역 활성에 미치는 영향)

  • Kang, In Soon;Kim, Hyeju;Lee, Tae Ho;Kwon, Yong Sam;Son, Miwon;Kim, Chaekyun
    • YAKHAK HOEJI
    • /
    • v.58 no.2
    • /
    • pp.81-90
    • /
    • 2014
  • In order to determine the functional benefits of Cordyceps militaris in the immune system, we examined the immunomodulatory activities of C. militaris using an immunocompromised C57BL/6 mice, mouse spleen cells, RAW 264.7 macrophage cells, and A549 lung carcinoma cells. Mice were injected intraperitioneally with an immunosuppressive drug, cyclophosphamide, and then administered orally with 30, 100 and 300 mg/kg of 50% ethanol extract of C. militaris (CME 30, CME 100 and CME 300) for 14 days. CME increased splenocyte proliferation and natural killer (NK) cell activity compared to 3% hydroxypropyl methylcellulose-treated control mice. CME also increased the production of Th1 cytokines, IL-2 and TNF-${\alpha}$ in spleen cells isolated from CME-injected mice and in vitro, which suggested the enhanced cellular immunity in response to CME. CME also increased splenocyte proliferation, NK cell activity, and IL-2 and TNF-${\alpha}$ production compared to 1 ${\mu}M$ methotrexate-treated spleen cells in vitro. We examined whether C. militaris regulates the production of inflammatory mediators in LPS-stimulated RAW 264.7 cells. CME inhibited LPS-induced NO production and iNOS expression in a dose dependent manner, while COX-2 expression was remained unchanged. In addition, CME also has free radical scavenging activity, indicating its antioxidant activity. These results indicate that C. militaris enhances immune activity by promoting immune cell proliferation and cytokine production.

Evidence for the association of peroxidases with the antioxidant effect of p-coumaric acid in endothelial cells exposed to high glucose plus arachidonic acid

  • Lee, Seung-Jin;Mun, Gyeong-In;An, Sang-Mi;Boo, Yong-Chool
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.561-567
    • /
    • 2009
  • Although many plant-derived phenolic compounds display antioxidant effects in biological systems, their mechanism of action remains controversial. In this study, the mechanism by which p-coumaric acid (p-CA) performs its antioxidant action was investigated in bovine aortic endothelial cells under oxidative stress due to high levels of glucose (HG) and arachidonic acid (AA), a free fatty acid. p-CA prevented lipid peroxidation and cell death due to HG+AA without affecting the production of reactive oxygen species. The antioxidant effect of p-CA was not decreased by buthionine-(S,R)-sulfoximine, an inhibitor of cellular GSH synthesis. In contrast, pretreatment with p-CA caused the induction of peroxidases that decomposed t-butyl hydroperoxide in a p-CA-dependent manner. Furthermore, the antioxidant effect of p-CA was significantly mitigated by methimazole, which was shown to inhibit the catalytic activity of 'p-CA peroxidases' in vitro. Therefore, it is suggested that the induction of these previously unidentified 'p-CA peroxidases' is responsible for the antioxidant effect of p-CA.

Effects of in vivo-stresses on the Activities of the Myocardial Antioxidant Enzymes and the Ischemia-Reperfusion Injury in Rat Hearts (스트레스성 자극에 의한 항산화효소 유도와 허혈/재관류 심장 보호효과)

  • 박종완;김영훈;김명석
    • Toxicological Research
    • /
    • v.11 no.1
    • /
    • pp.161-168
    • /
    • 1995
  • It has been found that various stress challenges induce the myocardial antioxidant enzymes and produce an acquisition of the cellular resistance to the ischemic injury in animal hearts. Most of the stresses, however, seem to be guite dangerous to an animal's life. In the present study, therefore, we tried to search for safely applicable stress modalities which could lead to the induction of antioxidant enzymes and the production of myocardial tolerance to the ischemia-reperfusion injury. Male Sprague-Dawley rats (200-250 g) were exposed to various non-fatal stress conditions, i.e., hyperthermia (environmental temperature of $42^{\circ}C$ for 30 min, non-anesthetized animal), iramobilization (60 min), treadmill exercise (20 m/min, 30min), swimming (30 min), and hyperbaric oxyflenation (3 atm, 60 min), once a day for 5 days. The activities of myocardial antioxidant enzymes and the ischemia-reperfusion injury of isolated hearts were evaluated at 24 hr after the last application of the stresses. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase, glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase (G6PD), were assayed in the freshly excised ventricular tissues. The ischemia-reperfusion injury was produced by 20 min-global ischemia followed by 30 min-reperfusion using a Langendorff perfusion system. In swimming and hyperbaric oxygenation groups, the activities of SOD and G6PD increased significantly and in the hyperthermia group, the catalase activity was elevated by 63% compared to the control. The percentile recoveries of cardiac function at 30 min of the post-ischemic reperfusion were 55.4%, 73.4%, and 74.2% in swimming, the hyperbaric oxygenation and the hyperthermia groups, respectively. The values were significantly higher than that of the control (38.6%). In additions, left ventricular end-diastolic pressure and lactate dehydrogenase release were significantly reduced in the stress groups. The results suggest that the antioxidant enzymes in the heart could be induced by the apparently safe in vivo-stresses and this may be involved in the myocardial protection from the ischemia-reperfusion injury.

  • PDF

The Activities of Antioxidant Enzymes in Response to Oxidative Stresses and Hormones in Paraquat-tolerant Rehmannia glutinosa Plants

  • Choi, Dong-Geun;Yoo, Nam-Hee;Yu, Chang-Yeon;De Los Reyes, Benildo;Yun, Song-Joong
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.618-624
    • /
    • 2004
  • All members of R. glutinosa show the unique characteristic of intrinsic tolerance to paraquat (PQ). Antioxidant enzymes have been proposed to be the primary mechanism of PQ resistance in several plant species. Therefore, the antioxidant enzyme systems of R. glutinosa were evaluated by comparatively analyzing cellular antioxidant enzyme levels, and their responses of oxidative stresses and hormones. The levels of ascorbate peroxidase (APX), glutathione reductase (GR), non-specific peroxidase (POX), and superoxide dismutase (SOD) were 7.3-, 4.9-, 2.7- and 1.6-fold higher in PQ-tolerant R. glutinosa than in PQ-susceptible soybeans. However, the activity of catalase (CAT) was about 12-fold higher in the soybeans. The activities of antioxidant enzymes reduced after PQ treatment in the two species, with the exception of POX and SOD in R. glutinosa, which increased by about 40%. Interestingly, the activities of APX, SOD and POX in R. glutinosa, relative to those in soybeans, were further increased by 49, 67 and 93% after PQ treatment. The considerably higher intrinsic levels, and increases in the relative activities of antioxidant enzymes in R. glutinosa under oxidative stress support the possible role of these enzymes in the PQ tolerance of R. glutinosa. However, the relatively lower levels of SOD versus PQ tolerance, and the mixed responses of antioxidant enzymes to stresses and hormones, suggest a possible alternative mechanism(s) for PQ tolerance in R. glutinosa.

Antioxidant Activities of Gynura procumbens Extracts (명월초 추출물의 항산화 활성)

  • Kim, Kyeong Jin;Gim, Ah Hyun;Kim, Ji Hyun;Kim, Do Hee;Lee, Seo Rin;Park, Jee Hyun;Lim, Ji Won;Ha, Ji Hoon;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.2
    • /
    • pp.181-187
    • /
    • 2015
  • In this study, the methanol fraction and aglycone fraction were made from Gynura procumbens (G. procumbens) extracts and their antioxidative effects were investigated. The free radical scavenging activity (1,1-diphenyl-2-picrylhydrazyl, DPPH), total antioxidant capacity by luminol-dependent chemiluminescence assay, and the protective effects against reactive oxygen species (ROS) in erythrocytes were measured to evaluate the antioxidative activities of the extracts. Free radical scavenging activities ($FSC_{50}$) of the methanol fraction and aglycone fraction were 90.25 and $81.38{\mu}g/mL$, respectively. Total antioxidant capacities ($OSC_{50}$) of the methanol fraction and aglycone fraction were 16.96 and $12.30{\mu}g/mL$, respectively. The free radical scavenging activity and total antioxidant capacity of the aglycone fraction were greater than those of methanol fraction. The cellular protective effect on the $^1O_2$-induced cellular damage of human erythrocytes was confirmed by ${\tau}_{50}$ value. The ${\tau}_{50}$ value of the methanol fraction and aglycone fraction were 36.7 min and 76.1 min, respectively in $5{\mu}g/mL$, and the aglycone fraction showed about 2 times higher cellular protecive effect than (+)-${\alpha}$-tocopherol (35.4 min). These results indicate that the aglycone fraction of G. procumbens extracts has application possibility as antioxidant ingredient of cosmetic.

Antioxidant and Cellular Protective Effects of Moringa oleifera Leaves Extract (드럼스틱 잎 추출물의 항산화 및 세포보호 효과)

  • Xuan, Song Hua;Kim, A Rang;Jeong, Yoon Ju;Lee, Nan Hee;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.3
    • /
    • pp.217-226
    • /
    • 2016
  • In this study, we investigated the antioxidative and cellular protective effects on HaCaT cells and erythrocytes of Moringa oleifera (M. oleifera) leaves extract and its fractions. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of M. oleifera leaves. The free radical scavenging activity ($FSC_{50}$) of the extract and fractions of M. oleifera leaves were in the following order: 50% ethanol extract ($77.10{\mu}g/mL$) < ethyl acetate fraction ($20.63{\mu}g/mL$) < aglycone fraction ($17.00{\mu}g/mL$) by using the 1, 1-diphenyl-2-picrylhydrazyl. In $Fe^{3+}-EDTA/H_2O_2$ system using the luminol, reactive oxygen species (ROS) scavenging activities (total antioxidant capacity, $OSC_{50}$) of aglycone fraction ($OSC_{50}=0.63{\mu}g/mL$) was the strongest among all extracts, which was much higher than L-ascorbic acid ($1.50{\mu}g/mL$). In the $^1O_2$-induced cellular damage of erythrocytes, the cellular protective effects of 50% ethanol extract (${\tau}_{50}=46.9min$) and aglycone fraction (${\tau}_{50}=122.1min$) were higher than (+)-${\alpha}$-tocopherol (${\tau}_{50}=37.7min$), known as a lipophilic antioxidant at $10{\mu}g/mL$. After cell damage induced by $400mJ/cm^2$ UVB irradiation, the cellular protective effects of ethyl acetate and aglycone fraction of M. oleifera leaves extract were showed on the concentration from 0.20 to $1.56{\mu}g/mL$. These results suggest that M. oleifera leaves extract and its fractions can function as a natural antioxidant agent in cosmetics on skin exposed to UV radiation by protecting cellular membrane against ROS.

Antioxidant and Cellular Protective Activities of Ecklonia cava Extracts against Reactive Oxyegen Species (감태(Ecklonia cava) 추출물의 항산화 및 세포보호 활성)

  • Yoo, Cha Young;Kim, Si Yun;Park, Jung Won;Sung, Soo An;Kim, Da Ae;Park, Jee Hyun;Xuan, Song Hua;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.287-294
    • /
    • 2015
  • In this study, we investigated the antioxidative effects of brown seaweed Ecklonia cava extract and its subfractions. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of E. cava. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of ethyl acetate fraction ($FSC_{50}=6.98{\mu}g/mL$) and aglycone fraction ($7.03{\mu}g/mL$) are similar to that of (+)-${\alpha}$-tocopherol ($8.98{\mu}g/mL$) which is a reference control. Reactive oxygen species (ROS) scavenging activity (total antioxidant capacity, $OSC_{50}$) of the aglycone fraction ($OSC_{50}=14.48{\mu}g/mL$) on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay was the strongest among all extract and fractions. However, all samples showed lower antioxidant activities than that of L-ascorbic acid ($6.88{\mu}g/mL$) known as a powerful antioxidant. The protective effect of 50% ethanol extract on the $^1O_2$-induced cellular damage of human erythrocytes was dependent on the concentration from 5 to $50{\mu}g/mL$. Both ethyl acetate fraction and aglycone fraction showed strong cellular protective activities at $10{\mu}g/mL$, where the cellular protective effects (${\tau}_{50}$) of each fraction were recorded 442.0 min and 539.9 min, respectively. Three kinds of extract/fractions of E. cava showed much greater cellular protective activities at $10{\mu}g/mL$ than that of liposoluble antioxidant (+)-${\alpha}$-tocopherol (40.6 min) which is a reference control. These results suggest E. cava extracts and its fractions can be applied as an antioxidant ingredient in a field of cosmetics.

Antioxidant, anti-inflammatory, and antibacterial activities of a 70% ethanol-Symphyocladia linearis extract

  • Jeong Min Lee;Mi-Jin Yim;Hyun-Soo Kim;Seok-Chun Ko;Ji-Yul Kim;Gun-Woo Oh;Kyunghwa Baek;Dae-Sung Lee
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.11
    • /
    • pp.579-586
    • /
    • 2022
  • Research on the potential biological activity of red alga Symphyocladia spp. has been limited to Symphyocladia latiuscula, which is widely used as a food ingredient in Korea. Here, we examined the biological activity of another species, Symphyocladia linearis, which is found in Korea and was reported as a new species in 2013. The aim of this study was to evaluate the antioxidant, anti-inflammatory, and antibacterial properties of a 70% ethanol extract of S. linearis. Antioxidant activity, which was evaluated using radical scavenging assays, revealed half maximal inhibitory concentration values for 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) of 34.57 and 11.70 ㎍/mL algal extract, respectively. Anti-inflammatory activity of the S. linearis ethanolic extract was evaluated using RAW 264.7 cells by measuring the inhibition of lipopolysaccharide-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production. The potential cytotoxicity of NO and PGE2 was first examined, confirming no toxicity at concentrations ranging from 10-100 ㎍/mL. NO production was inhibited 61.1% and 78.0% at 50 and 100 ㎍/mL S. linearis extract, respectively; and PGE2 production was inhibited 69.1%, 83.2%, and 94.8% at 25, 50, and 100 ㎍/mL S. linearis extract, respectively. Thus, the S. linearis extract showed very strong efficacy against PGE2 production. The cellular production of reactive oxygen species, measured using 2',7'-dichlorofluorescin diacetate fluorescence, was inhibited 48.8% by the addition of 100 ㎍/mL S. linearis extract. Antibacterial activity was evaluated using the disc diffusion method and minimum inhibitory concentration (MIC). S. linearis was effective only against gram-positive bacteria, exhibiting antibacterial activity against Staphylococcus aureus with a MIC of 256 ㎍/mL extract and against Bacillus cereus with a MIC of 1,024 ㎍/mL extract. Based on these results, we infer that a 70% ethanolic extract of S. linearis possesses strong anti-inflammatory properties, and therefore has the potential to be used in the prevention and treatment of inflammatory and immune diseases.