Browse > Article
http://dx.doi.org/10.15230/SCSK.2015.41.3.287

Antioxidant and Cellular Protective Activities of Ecklonia cava Extracts against Reactive Oxyegen Species  

Yoo, Cha Young (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology)
Kim, Si Yun (Seoul Ban-po high school)
Park, Jung Won (Seoul Ban-po high school)
Sung, Soo An (Seoul Ban-po high school)
Kim, Da Ae (Seoul Ban-po high school)
Park, Jee Hyun (Seoul Ban-po high school)
Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology)
Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D center, Seoul National University of Science and Technology)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.41, no.3, 2015 , pp. 287-294 More about this Journal
Abstract
In this study, we investigated the antioxidative effects of brown seaweed Ecklonia cava extract and its subfractions. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of E. cava. The free radical (1,1-diphenyl-2-picrylhydrazyl, DPPH) scavenging activities ($FSC_{50}$) of ethyl acetate fraction ($FSC_{50}=6.98{\mu}g/mL$) and aglycone fraction ($7.03{\mu}g/mL$) are similar to that of (+)-${\alpha}$-tocopherol ($8.98{\mu}g/mL$) which is a reference control. Reactive oxygen species (ROS) scavenging activity (total antioxidant capacity, $OSC_{50}$) of the aglycone fraction ($OSC_{50}=14.48{\mu}g/mL$) on ROS generated in $Fe^{3+}-EDTA/H_2O_2$ system using the luminol-dependent chemiluminescence assay was the strongest among all extract and fractions. However, all samples showed lower antioxidant activities than that of L-ascorbic acid ($6.88{\mu}g/mL$) known as a powerful antioxidant. The protective effect of 50% ethanol extract on the $^1O_2$-induced cellular damage of human erythrocytes was dependent on the concentration from 5 to $50{\mu}g/mL$. Both ethyl acetate fraction and aglycone fraction showed strong cellular protective activities at $10{\mu}g/mL$, where the cellular protective effects (${\tau}_{50}$) of each fraction were recorded 442.0 min and 539.9 min, respectively. Three kinds of extract/fractions of E. cava showed much greater cellular protective activities at $10{\mu}g/mL$ than that of liposoluble antioxidant (+)-${\alpha}$-tocopherol (40.6 min) which is a reference control. These results suggest E. cava extracts and its fractions can be applied as an antioxidant ingredient in a field of cosmetics.
Keywords
antioxidant; reactive oxygen species; brown algae; Ecklonia cava; phlorotannin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 R. E. Moore, Algal nonisoprenoids, marine natural products, chemical and biological perspective, ed. P. J. Scheuer, 1, 44, Academic Press, New York (1978).
2 S. Koyanagi, N. Tanigawa, H. Nakagawa, S. Soeda, and H. Shimeno, Oversulfation of fucoidan enhances its anti-angiogenic and anti-tumor activities, Biochem. Pham., 65(2), 173 (2003).   DOI
3 S. J. Heo, E. J. Park, K. W. Lee, and Y. J. Jeon, Antioxidant activities of enzymatic extracts from brown seaweeds, Bioresour. Technol., 96(14), 1613 (2005).   DOI
4 M. A. Ragan and K. W. Glombitza, Phlorotannins: Brown algal polyphenols, Progress in Phycological Research, 4, 130 (1986).
5 A. R. Kim, T. S. Shin, M. S. Lee, J. Y. Park, K. E. Park, N. Y. Yoon, J. S. Kim, J. S. Choi, B. C. Jang, D. S. Byun, N. K. Park, and H. R. Kim, Isolation and identification of phlorotannins from Ecklonia stolonifera with anti-oxidant and anti-inflammatory properties, J. Agric. Food Chem., 57(9), 3483 (2009).   DOI
6 S. J. Heo, S. C. Ko, S. H. Cha, D. H. Kang, H. S. Park, Y. U. Choi, D. K. Kim, W. K. Jung, and Y. J. Jeon, Effects of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effects against photo-oxidation stress induced by UV-B radiation, Toxicol. In Vitro, 23(6), 1123 (2009).   DOI
7 Q. T. Le, Y. Li, Z. J. Qian, M. M. Kim, and S. K. Kim, Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release, Process Biochem., 44(2), 168 (2008).   DOI
8 M. J. Joe, S. N. Kim, H. Y. Choi, W. S. Shin, G. M. Park, D. W. Kang, and Y. K. Kim, The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts, Biol. Pharm. Bull., 29(8), 1735 (2006).   DOI
9 J. Uitto and E. F. Bernstein, Molecular mechanisms of cutaneous aging: Connective tissue alterations in the dermis, J. Invest. Dermatol. Symp. Proc., 3(1), 41 (1998).
10 S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23(3), 75 (1997).
11 B. A. Gilchrest, Biochemical and molecular changes in photodamaged skin, ed. B. A. Gilchrest, 168, Photodamage, Blackwell Science, Cambridge (1995).
12 K. M. Hanson and J. D. Simon, Epidermal trans-urocanic acid and the UV-A-induced photoaging of the skin, Proc. Natl. Acad. Sci. U.S.A., 95(18), 10576 (1998).   DOI
13 F. Urbach, Biological responses to UVA radiation, ed. F. Urbach, 1, Valdemar Publishing Company, Overland Park (1992).
14 H. N. Ananthaswamy and W. E. Pierceall, Molecular mechanisms of ultraviolet radiation carcinogenesis, Photochem. Photobiol., 52(6), 1119 (1990).   DOI
15 H. Masaki, T. Atsumi, and H. Sakurai, Detection of hydrogen peroxide and hydroxyl radicals in murine skin fibroblasts under UVB irradiation, Biochem. Biophys. Res. Commun., 206(2), 474 (1995).   DOI
16 B. A. Jurkiewicz and G. R. Buettnerf, EPR detection of free radicals in UV-irradiated skin: Mouse versus human, Photochem. Photobiol., 64(6), 918 (1996).   DOI
17 P. Brenneisen, J. Wenk, L. O. Klotz, M. Wlaschek, K. Briviba, T. Krieg, H. Sies, and K. Scharffetter-Kochanek, Central role of ferrous/ferric iron in the ultraviolet B irradiation-mediated signaling pathway leading to increased interstitial collagenase (matrix-degrading metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) mRNA levels in cultured human dermal fibroblasts, J. Biol. Chem., 273, 5279 (1998).   DOI
18 R. Ogura, M. Sugiyama, J. Nishi, and N. Haramaki, Mechanism of lipid radical formation following exposure of epidermal homogenate to ultraviolet light, J. Invest. Dermatol., 97, 1044 (1991).   DOI
19 S. N. Park, D. H. Won, J. P. Hwang, and S. B. Han, Cellular protective effects of dehydroeffusol isolated from Juncus effusus L. and the mechanisms underlying these effects, J. Ind. Eng. Chem., 20, 3046 (2014).   DOI
20 S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680 (2012).   DOI
21 H. S. Rho, C. S. Lee, S. M. Ahn, Y. D. Hong, S. S. Shin, Y. H. Park, and S. N. Park, Studies on tyrosinase inhibitory and antioxidant activities of benzoic acid derivatives containing kojic acid moiety, Bull. Korean Chem. Soc., 32(12), 4411 (2011).   DOI