DOI QR코드

DOI QR Code

Antioxidant and Cellular Protective Effects of Moringa oleifera Leaves Extract

드럼스틱 잎 추출물의 항산화 및 세포보호 효과

  • Xuan, Song Hua (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Kim, A Rang (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Jeong, Yoon Ju (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Lee, Nan Hee (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology)
  • 현송화 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 김아랑 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 정윤주 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 이난희 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터) ;
  • 박수남 (서울과학기술대학교 정밀화학과 화장품종합기술연구소, 코스메틱 융.복합산업 지원 센터)
  • Received : 2016.06.17
  • Accepted : 2016.07.18
  • Published : 2016.09.30

Abstract

In this study, we investigated the antioxidative and cellular protective effects on HaCaT cells and erythrocytes of Moringa oleifera (M. oleifera) leaves extract and its fractions. All experiments were performed with 50% ethanol extract, ethyl acetate fraction and aglycone fraction of M. oleifera leaves. The free radical scavenging activity ($FSC_{50}$) of the extract and fractions of M. oleifera leaves were in the following order: 50% ethanol extract ($77.10{\mu}g/mL$) < ethyl acetate fraction ($20.63{\mu}g/mL$) < aglycone fraction ($17.00{\mu}g/mL$) by using the 1, 1-diphenyl-2-picrylhydrazyl. In $Fe^{3+}-EDTA/H_2O_2$ system using the luminol, reactive oxygen species (ROS) scavenging activities (total antioxidant capacity, $OSC_{50}$) of aglycone fraction ($OSC_{50}=0.63{\mu}g/mL$) was the strongest among all extracts, which was much higher than L-ascorbic acid ($1.50{\mu}g/mL$). In the $^1O_2$-induced cellular damage of erythrocytes, the cellular protective effects of 50% ethanol extract (${\tau}_{50}=46.9min$) and aglycone fraction (${\tau}_{50}=122.1min$) were higher than (+)-${\alpha}$-tocopherol (${\tau}_{50}=37.7min$), known as a lipophilic antioxidant at $10{\mu}g/mL$. After cell damage induced by $400mJ/cm^2$ UVB irradiation, the cellular protective effects of ethyl acetate and aglycone fraction of M. oleifera leaves extract were showed on the concentration from 0.20 to $1.56{\mu}g/mL$. These results suggest that M. oleifera leaves extract and its fractions can function as a natural antioxidant agent in cosmetics on skin exposed to UV radiation by protecting cellular membrane against ROS.

본 연구에서는 드럼스틱 잎 추출물과 분획들의 항산화 활성 및 HaCaT 세포와 적혈구 세포에서의 세포보호효과를 측정하였다. 모든 실험은 드럼스틱 잎의 50% 에탄올 추출물, 에틸아세테이트 분획 및 아글리콘 분획을 이용하였다. 1,1-Diphenyl-2-picrylhydrazyl radical을 이용한 자유 라디칼 소거 활성($FSC_{50}$)은 50% 에탄올 추출물($77.10{\mu}g/mL$) < 에틸아세테이트 분획($20.63{\mu}g/mL$) < 아글리콘 분획($17.00{\mu}g/mL$) 순으로 증가하였다. 루미놀을 이용한 $Fe^{3+}-EDTA/H_2O_2$계에서의 활성산소 소거 활성(총항산화능, $OSC_{50}$)은 아글리콘 분획의 $OSC_{50}$ 값이 $0.63{\mu}g/mL$로 추출물 중 가장 큰 항산화능이 나타났으며, 이는 L-ascorbic acid ($1.50{\mu}g/mL$)의 항산화 활성보다 컸다. $^1O_2$로 유도된 적혈구 세포 손상에 있어서 50% 에탄올 추출물 및 아글리콘 분획의 세포 보호 효과(${\tau}_{50}$)는 $10{\mu}g/mL$에서 각각 46.9 및 122.1 min을 나타냈다. 이는 지용성 항산화제로 알려진 (+)-${\alpha}$-tocopherol (37.7 min)보다도 훨씬 큰 세포 보호 활성을 보여주었다. $400mJ/cm^2$의 UVB를 HaCaT 세포에 조사하여 세포손상을 유도한 후 에틸아세테이트 분획 및 아글리콘 분획은 $0.20{\sim}1.56{\mu}g/mL$ 농도에서 농도 의존적으로 세포보호효과를 나타내었다. 이상의 결과들은 자외선에 노출된 피부에서 드럼스틱잎 추출물과 분획들이 ROS 소거를 통하여 세포를 보호함으로서 화장품에서 천연 항산화제로서 사용 가능함을 시사하였다.

Keywords

References

  1. A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16 (2015). https://doi.org/10.1016/j.arr.2015.01.001
  2. M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. J. Ma, A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol., 63(1-3), 41 (2001). https://doi.org/10.1016/S1011-1344(01)00201-9
  3. D. Bernhard, C. Moser, A. Backovic, and G. Wick, Cigarette smoke - an aging accelerator?, Exp. Gerontol., 42(3), 160 (2007). https://doi.org/10.1016/j.exger.2006.09.016
  4. B. A. Gilchrest, Skin aging and photoaging - an overview, J. Am. Acad. Dermatol., 21(3), 610 (1989). https://doi.org/10.1016/S0190-9622(89)70227-9
  5. S. N. Park, Skin aging and antioxidant, J. Soc. Cosmet. Scientists Korea, 23(3), 75 (1997).
  6. Y. Al-Nuaimi, M. J. Sherratt, and C. E. Griffiths, Skin health in older age, Maturitas, 79(3), 256 (2014). https://doi.org/10.1016/j.maturitas.2014.08.005
  7. J. Wohlrab, K. Hilpert, and L. Wolff, Epidermal aging and anti-aging strategies, Hautarzt, 67(2), 107 (2016). https://doi.org/10.1007/s00105-015-3734-6
  8. S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680 (2012). https://doi.org/10.1016/j.jiec.2011.11.126
  9. C. Waterman, D. M. Cheng, P. Rojas-Silva, A. Poulev, J. Dreifus, M. A. Lila, and I. Raskin, Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro, Phytochemistry, 103, 114 (2014). https://doi.org/10.1016/j.phytochem.2014.03.028
  10. R. S. G. Singh, P. S. Negi, and C. Radha, Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour, J. Funct. Foods, 5(4), 1883 (2013). https://doi.org/10.1016/j.jff.2013.09.009
  11. W. Nouman, F. Anwar, T. Gull, A. Newton, E. Rosa, and R. Dominguez-Perles, Profiling of polyphenolics, nutrients and antioxidant potential of germplasm's leaves from seven cultivars of Moringa oleifera Lam, Ind. Crops Prod., 83, 166 (2016). https://doi.org/10.1016/j.indcrop.2015.12.032
  12. M. Kurokawa, A. Wadhwani, H. Kai, M. Hidaka, H. Yoshida, C. Sugita, W. Watanabe, K. Matsuno, and A. Hagiwara, Activation of cellular immunity in herpes simplex virus type 1-infected mice by the oral administration of aqueous extract of Moringa oleifera Lam. leaves, Phytother. Res., 30(5), 797 (2016). https://doi.org/10.1002/ptr.5580
  13. P. R. Bhutada, A. J. Jadhav, D. V. Pinjari, P. R. Nemade, and R. D. Jain, Solvent assisted extraction of oil from Moringa oleifera Lam. seeds, Ind. Crops Prod., 82, 74 (2016). https://doi.org/10.1016/j.indcrop.2015.12.004
  14. S. Sreelatha and P. R. Padma, Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity, Plant. Foods Hum. Nutr., 64(4), 303 (2009). https://doi.org/10.1007/s11130-009-0141-0
  15. J. O. Palafox, A. Navarrete, J. C. Sacramento-Rivero, C. Rubio-Atoche, P. A. Escoffie, and J. A. Rocha-Uribe, Extraction and characterization of oil from Moringa oleifera using supercritical $CO_2$ and traditional solvents, Am. J. Anal. Chem., 3(12A), 946 (2012). https://doi.org/10.4236/ajac.2012.312A125
  16. S. K. Roy, K. Chandra, K. Ghosh, S. Mondal, D. Maiti, A. K. Ojha, D. Das, I. Chakraborty, and S. S. Islam, Structural investigation of a heteropolysaccharide isolated from the pods (fruits) of Moringa oleifera (Sajina), Carbohydr. Res., 342(16), 2380 (2007). https://doi.org/10.1016/j.carres.2007.07.020
  17. T. Ramabulana, R. D. Mavunda, P. A. Steenkamp, L. A. Piater, I. A. Dubery, and N. E. Madala, Perturbation of pharmacologically relevant polyphenolic compounds in Moringa oleifera against photo- oxidative damages imposed by gamma radiation, J. Photochem. Photobiol. B, 156, 79 (2016). https://doi.org/10.1016/j.jphotobiol.2016.01.013
  18. P. Siddhuraju, A. Abirami, G. Nagarani, and M. Sangeethapriya, Antioxidant capacity and total phenolic content of aqueous acetone and ethanol extract of edible parts of Moringa oleifera and Sesbania grandiflora, IJIRSE, 8(9), 1091 (2014).
  19. M. Kim, Y. G. Park, H. J. Lee, S. J. Lim, and C. W. Nho, Youngiasides A and C isolated from Youngia denticulatum inhibit UVB-induced MMP expression and promote type I procollagen production via repression of MAPK/AP-1/NF-kappaB and activation of AMPK/Nrf2 in HaCaT cells and human dermal fibroblasts, J. Agric. Food Chem., 63 (22) 5428 (2015). https://doi.org/10.1021/acs.jafc.5b00467
  20. A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16 (2015). https://doi.org/10.1016/j.arr.2015.01.001
  21. Y. R. Helfrich, D. L. Sachs, and J. J. Voorhees, Overview of skin aging and photoaging, Dermatol. Nurs., 20, 177 (2008).