• 제목/요약/키워드: cell-specific gene regulation

검색결과 185건 처리시간 0.028초

Swiprosin-1 Expression Is Up-Regulated through Protein Kinase $C-{\theta}$ and $NF-{\kappa}B$ Pathway in T Cells

  • Kim, Young-Dae;Kwon, Min-Sung;Na, Bo-Ra;Kim, Hye-Ran;Lee, Hyun-Su;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • 제13권2호
    • /
    • pp.55-62
    • /
    • 2013
  • Swiprosin-1 exhibits the highest expression in $CD8^+$ T cells and immature B cells and has been proposed to play a role in lymphocyte biology through actin remodeling. However, regulation of swiprosin-1 gene expression is poorly understood. Here we report that swiprosin-1 is up-regulated in T cells by PKC pathway. Targeted inhibition of the specific protein kinase C (PKC) isotypes by siRNA revealed that $PKC-{\theta}$ is involved in the expression of swiprosin-1 in the human T cells. In contrast, down-regulation of swiprosin-1 by A23187 or ionomycin suggests that calcium-signaling plays a negative role. Interestingly, swiprosin-1 expression is only reduced by treatment with $NF-{\kappa}B$ inhibitors but not by NF-AT inhibitor, suggesting that the $NF-{\kappa}B$ pathway is critical for regulation of swiprosin-1 expression. Collectively, these results suggest that swiprosin-1 is a $PKC-{\theta}$-inducible gene and that it may modulate the late phase of T cell activation after antigen challenge.

MiRNA Molecular Profiles in Human Medical Conditions: Connecting Lung Cancer and Lung Development Phenomena

  • Aghanoori, Mohamad-Reza;Mirzaei, Behnaz;Tavallaei, Mahmood
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9557-9565
    • /
    • 2014
  • MiRNAs are endogenous, single stranded ~22-nucleotide non-coding RNAs (ncRNAs) which are transcribed by RNA polymerase II and mediate negative post-transcriptional gene regulation through binding to 3'untranslated regions (UTR), possibly open reading frames (ORFs) or 5'UTRs of target mRNAs. MiRNAs are involved in the normal physiology of eukaryotic cells, so dysregulation may be associated with diseases like cancer, and neurodegenerative, heart and other disorders. Among all cancers, lung cancer, with high incidence and mortality worldwide, is classified into two main groups: non-small cell lung cancer and small cell lung cancer. Recent promising studies suggest that gene expression profiles and miRNA signatures could be a useful step in a noninvasive, low-cost and repeatable screening process of lung cancer. Similarly, every stage of lung development during fetal life is associated with specific miRNAs. Since lung development and lung cancer phenomena share the same physiological, biological and molecular processes like cell proliferation, development and shared mRNA or expression regulation pathways, and according to data adopted from various studies, they may have partially shared miRNA signature. Thus, focusing on lung cancer in relation to lung development in miRNA studies might provide clues for lung cancer diagnosis and prognosis.

Cell Cycle Regulated Expression of Subcloned Chicken H3 Histone Genes and Their 5' Flanking Sequences

  • Son, Seung-Yeol;Tae, Gun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권4호
    • /
    • pp.274-277
    • /
    • 1994
  • We subcloned two chicken H3 histone genes and transfected them into Rat 3 cell line. One contains 300 bp 5' to its cap site and the other contains 130 bp 5' to its cap site when cloned into plasm ids. Both of them showed 5' phase specific expression of their mRNA about 8 fold higher (during 5' phase) than during Gl phase. This means that only 130 bp 5' to its cap site was enough to confer cell cycle regulated expression of the latter gene. The DNA sequences of their 5' flanking region did not reveal any particular homologies or subtype-specific sequences. The DNA sequence data also showed that even though the protein coding regions of the histone genes have been conserved exceptionally well throughout evolution, their 5' untranslated regions have not been conserved as well.

  • PDF

Epigenetic Changes within the Promoter Regions of Antigen Processing Machinery Family Genes in Kazakh Primary Esophageal Squamous Cell Carcinoma

  • Sheyhidin, Ilyar;Hasim, Ayshamgul;Zheng, Feng;Ma, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10299-10306
    • /
    • 2015
  • The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher ($0.0517{\pm}0.0357$) in Kazakh esophageal cancer than in neighboring normal tissues ($0.0380{\pm}0.0214$, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

Single-cell RNA sequencing reveals the heterogeneity of adipose tissue-derived mesenchymal stem cells under chondrogenic induction

  • Jeewan Chun;Ji-Hoi Moon;Kyu Hwan Kwack;Eun-Young Jang;Saebyeol Lee;Hak Kyun Kim;Jae-Hyung Lee
    • BMB Reports
    • /
    • 제57권5호
    • /
    • pp.232-237
    • /
    • 2024
  • This study investigated how adipose tissue-derived mesenchymal stem cells (AT-MSCs) respond to chondrogenic induction using droplet-based single-cell RNA sequencing (scRNA-seq). We analyzed 37,219 high-quality transcripts from control cells and cells induced for 1 week (1W) and 2 weeks (2W). Four distinct cell clusters (0-3), undetectable by bulk analysis, exhibited varying proportions. Cluster 1 dominated in control and 1W cells, whereas clusters (3, 2, and 0) exclusively dominated in control, 1W, and 2W cells, respectively. Furthermore, heterogeneous chondrogenic markers expression within clusters emerged. Gene ontology (GO) enrichment analysis of differentially expressed genes unveiled cluster-specific variations in key biological processes (BP): (1) Cluster 1 exhibited up-regulation of GO-BP terms related to ribosome biogenesis and translational control, crucial for maintaining stem cell properties and homeostasis; (2) Additionally, cluster 1 showed up-regulation of GO-BP terms associated with mitochondrial oxidative metabolism; (3) Cluster 3 displayed up-regulation of GO-BP terms related to cell proliferation; (4) Clusters 0 and 2 demonstrated similar up-regulation of GO-BP terms linked to collagen fibril organization and supramolecular fiber organization. However, only cluster 0 showed a significant decrease in GO-BP terms related to ribosome production, implying a potential correlation between ribosome regulation and the differentiation stages of AT-MSCs. Overall, our findings highlight heterogeneous cell clusters with varying balances between proliferation and differentiation before, and after, chondrogenic stimulation. This provides enhanced insights into the single-cell dynamics of AT-MSCs during chondrogenic differentiation.

Epigenetic Control of Oxidative Stresses by Histone Acetyltransferases in Candida albicans

  • Kim, Jueun;Park, Shinae;Lee, Jung-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.181-189
    • /
    • 2018
  • Candida albicans is a major pathogenic fungus in humans, and meets at first the innate immune cells, such as macrophages, in its host. One important strategy of the host cell to kill C. albicans is to produce reactive oxygen species (ROS) by the macrophages. In response to ROS produced by the macrophages, C. albicans operates its defense mechanisms against them by expressing its oxidative stress response genes. Although there have been many research studies explaining the specific transcription factors and the expression of the oxidative stress genes in C. albicans, the regulation of the oxidative stress genes by chromatin structure is little known. Epigenetic regulation by the chromatin structure is very important for the regulation of eukaryotic gene expression, including the chromatin structure dynamics by histone modifications. Among various histone modifications, histone acetylation is reported for its direct relationship to the regulation of gene expression. Recent studies reported that histone acetyltransferases regulate genes to respond to the oxidative stress in C. albicans. In this review, we introduce all histone acetyltransferases that C. albicans contains and some papers that explain how histone acetyltransferases participate in the oxidative stress response in C. albicans.

Cell line-specific features of 3D chromatin organization in hepatocellular carcinoma

  • Yeonwoo Kim;Hyeokjun Yang;Daeyoup Lee
    • Genomics & Informatics
    • /
    • 제21권2호
    • /
    • pp.19.1-19.13
    • /
    • 2023
  • Liver cancer, particularly hepatocellular carcinoma (HCC), poses a significant global threat to human lives. To advance the development of innovative diagnostic and treatment approaches, it is essential to examine the hidden features of HCC, particularly its 3D genome architecture, which is not well understood. In this study, we investigated the 3D genome organization of four HCC cell lines-Hep3B, Huh1, Huh7, and SNU449-using in situ Hi-C and assay for transposase-accessible chromatin sequencing. Our findings revealed that HCC cell lines had more long-range interactions, both intra-and interchromosomal, compared to human mammary epithelial cells (HMECs). Unexpectedly, HCC cell lines displayed cell line-specific compartmental modifications at the megabase (Mb) scale, which could potentially be leveraged in determining HCC subtypes. At the sub-Mb scale, we observed decreases in intra-TAD (topologically associated domain) interactions and chromatin loops in HCC cell lines compared to HMECs. Lastly, we discovered a correlation between gene expression and the 3D chromatin architecture of SLC8A1, which encodes a sodium-calcium antiporter whose modulation is known to induce apoptosis by comparison between HCC cell lines and HMECs. Our findings suggest that HCC cell lines have a distinct 3D genome organization that is different from those of normal and other cancer cells based on the analysis of compartments, TADs, and chromatin loops. Overall, we take this as evidence that genome organization plays a crucial role in cancer phenotype determination. Further exploration of epigenetics in HCC will help us to better understand specific gene regulation mechanisms and uncover novel targets for cancer treatment.

Regulation of Laminin Chain Gene Expression by Ovaria Steroid Hormones in Uterine Tissues of Ovariectomized Mice

  • Chanseob Shim;Dongho Geum;Park, Donchan
    • Animal cells and systems
    • /
    • 제1권1호
    • /
    • pp.115-121
    • /
    • 1997
  • To precisely analyze the role of ovarian steroids in the regulation of laminin chain gene expression in mouse uterine tissues, the ovariectomized mouse model was used. Ovariectomized mice received a single injection of steroid hormones and total RNA was isolated from whole uterine tissues. Messenger RNA levels of each laminin chain (A, 81, and 82) were determined by competitive RT-peR procedures. Estradiol decreased mRNA levels of laminin 81 chain about two-fold, and 82 chain rather moderately. Estradiol-induced inhibition of laminin 81 and 82 chain mRNA levels were completely blocked by pretreatment with estrogen receptor antagonist tamoxifen. Estriol, a short acting estrogen which cannot induce hyperplastic responses of rodent uterine tissues, also showed an inhibitory effect on 81 and 82 chain mRNA levels, while estrone, an inactive estrogen, failed to influence either 8 chain mRNA levels. Effects of steroids on A chain mRNA level were quite different from those on 8 chains. Laminin A chain mRNA level was slightly increased by estradiol treatment, but negatively affected by progesterone. Progesterone treatment greatly increased both 8 chain mRNA levels, but slightly decreased A chain mRNA level compared to the control. The effect of progesterone on laminin chain-specific mRNA levels was further increased by co-injection of estradiol in a time-dependent manner. Progesterone-induced 81 and 82 chain mRNA transcription was inhibited by RU486, a synthetic anti-progesterone /anti-glucocorticoid. The present study demonstrates for the first time that steroids are able to regulate laminin gene expression in mouse uterine tissues, indicating that steroid-regulated laminin gene expression is involved in uterine growth and probably differentiation.

  • PDF

DNA Chip을 이용한 Transcriptional Activation Mechanism 분석

  • 김영준
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2001년도 제2회 생물정보 워크샵 (DNA Chip Bioinformatics)
    • /
    • pp.45-60
    • /
    • 2001
  • . Mediator of transcriptional regulation is the evolutionary conserved coactivator complex that plays He central role in the integration and recruitment of diverse regulatory signals and transcription machinery to certain promoters. In yeast, each Mediator subunit is required for transcriptional regulation of a distinct group of genes. In order to decipher the mechanistic roles of Mediator proteins in regulating developmental specific gene expression, we isolated, and analyzed a multiprotein complex containing Drosophila Mediate. homologs (dMediato.). dMediato. interacts with several sequence-sperific transcription factors and basal transcription machinery, and is critical for activated transcription in response to diverse transcriptional activators. In order to elucidate the function of Mediator in metazoan development, we isolated mutants of a conserved Mediate. subunit, Drosophila Med6 (dMed6). dMed6 null homozygotes failed to pupate and died in the third larval instar. Larval mitotic cells and most imaginal discs showed severe defects in proliferation, but no apparent morphological defect was observed in other larval tissues. Clonal analysis of dMed6 mutant cells revealed that dMed6 is essential for cell viability and proliferation of most adult cell types. Drosophila cDNA microarray, quantitative RT-PCR, and in situ expression analyses of developmentally regulated genes in dMed6 mutants showed that transcriptional activation of a subset of genes involved in neuroblast proliferation in the larval brain were most affected. Our results suggest that dMed6 is required in most for transcriptional regulation of a subset of genes important for cell proliferation and metabolism.

  • PDF

Interleukin-32 in Inflammatory Autoimmune Diseases

  • Kim, Soohyun
    • IMMUNE NETWORK
    • /
    • 제14권3호
    • /
    • pp.123-127
    • /
    • 2014
  • Interleukin-32 (IL-32) is a cytokine inducing crucial inflammatory cytokines such as tumor necrosis factor-${\alpha}(TNF{\alpha})$ and IL-6 and its expression is elevated in various inflammatory autoimmune diseases, certain cancers, as well as viral infections. IL-32 gene was first cloned from activated T cells, however IL-32 expression was also found in other immune cells and non-immune cells. IL-32 gene was identified in most mammals except rodents. It is transcribed as multiple-spliced variants in the absence of a specific activity of each isoform. IL-32 has been studied mostly in clinical fields such as infection, autoimmune, cancer, vascular disease, and pulmonary diseases. It is difficult to investigate the precise role of IL-32 in vivo due to the absence of IL-32 gene in mouse. The lack of mouse IL-32 gene restricts in vivo studies and restrains further development of IL-32 research in clinical applications although IL-32 new cytokine getting a spotlight as an immune regulatory molecule processing important roles in autoimmune, infection, and cancer. In this review, we discuss the regulation and function of IL-32 in inflammatory bowel diseases and rheumatoid arthritis.