DOI QR코드

DOI QR Code

MiRNA Molecular Profiles in Human Medical Conditions: Connecting Lung Cancer and Lung Development Phenomena

  • Aghanoori, Mohamad-Reza (Human Genetics Department, Shiraz University of Medical Sciences) ;
  • Mirzaei, Behnaz (Genetics Department, Science and Research Branch Islamic Azad University) ;
  • Tavallaei, Mahmood (Human Genetics Research Center, Baqiyatallah Medical Sciences University)
  • Published : 2014.12.18

Abstract

MiRNAs are endogenous, single stranded ~22-nucleotide non-coding RNAs (ncRNAs) which are transcribed by RNA polymerase II and mediate negative post-transcriptional gene regulation through binding to 3'untranslated regions (UTR), possibly open reading frames (ORFs) or 5'UTRs of target mRNAs. MiRNAs are involved in the normal physiology of eukaryotic cells, so dysregulation may be associated with diseases like cancer, and neurodegenerative, heart and other disorders. Among all cancers, lung cancer, with high incidence and mortality worldwide, is classified into two main groups: non-small cell lung cancer and small cell lung cancer. Recent promising studies suggest that gene expression profiles and miRNA signatures could be a useful step in a noninvasive, low-cost and repeatable screening process of lung cancer. Similarly, every stage of lung development during fetal life is associated with specific miRNAs. Since lung development and lung cancer phenomena share the same physiological, biological and molecular processes like cell proliferation, development and shared mRNA or expression regulation pathways, and according to data adopted from various studies, they may have partially shared miRNA signature. Thus, focusing on lung cancer in relation to lung development in miRNA studies might provide clues for lung cancer diagnosis and prognosis.

Keywords

References

  1. Akcakaya P, Ekelund S, Kolosenko I, et al (2011). miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol, 39, 311-8.
  2. Almeida MI, Reis RM, Calin GA (2011). MicroRNA history: discovery, recent applications, and next frontiers. Mutat Res, 717, 1-8. https://doi.org/10.1016/j.mrfmmm.2011.03.009
  3. Alsaleh G, Suffert G, Semaan N, et al (2009). Bruton's tyrosine kinase is involved in miR-346-related regulation of IL- 18 release by lipopolysaccharide-activated rheumatoid fibroblast-like synoviocytes. J Immunol, 182, 5088-97. https://doi.org/10.4049/jimmunol.0801613
  4. Ambros V (2004). The functions of animal microRNAs. Nature, 431, 350-5. https://doi.org/10.1038/nature02871
  5. Bahl A, Sharma DN, Rath GK, et al (2008). Small molecular inhibitor of transforming growth factor-beta protects against development of radiation-induced lung injury. In regard to Anscher MS et al. (Int J Radiat Oncol Biol Phys 2008;71:1-9). Int J Radiat Oncol Biol Phys, 72, 630. https://doi.org/10.1016/j.ijrobp.2008.05.057
  6. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  7. Bhaskaran M, Wang Y, Zhang H, et al (2009). MicroRNA-127 modulates fetal lung development. Physiol Genomics, 37, 268-78. https://doi.org/10.1152/physiolgenomics.90268.2008
  8. Boehm M, Slack F (2005). A developmental timing microRNA and its target regulate life span in C. elegans. Science, 310, 1954-7. https://doi.org/10.1126/science.1115596
  9. Bueno MJ, Perez de Castro I, Malumbres M (2008). Control of cell proliferation pathways by microRNAs. Cell Cycle, 7, 3143-8. https://doi.org/10.4161/cc.7.20.6833
  10. Cai X, Hagedorn CH, Cullen BR (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10, 1957-66. https://doi.org/10.1261/rna.7135204
  11. Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nat Rev Cancer, 6, 857-66. https://doi.org/10.1038/nrc1997
  12. Calin GA, Dumitru CD, Shimizu M, et al (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A, 99, 15524-9. https://doi.org/10.1073/pnas.242606799
  13. Calin GA, Sevignani C, Dumitru CD, et al (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 101, 2999-3004. https://doi.org/10.1073/pnas.0307323101
  14. Chen K, Rajewsky N (2007). The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet, 8, 93-103.
  15. Chen X, Hu Z, Wang W, et al (2012). Identification of ten serum microRNAs from a genome-wide serum microRNA expression profile as novel noninvasive biomarkers for nonsmall cell lung cancer diagnosis. Int J Cancer, 130, 1620-8. https://doi.org/10.1002/ijc.26177
  16. Chen Z, Xu L, Ye X, et al (2013). Polymorphisms of microRNA sequences or binding sites and lung cancer: a meta-analysis and systematic review. PLoS One, 8, 61008. https://doi.org/10.1371/journal.pone.0061008
  17. Dai Y, Huang YS, Tang M, et al (2007). Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus, 16, 939-46. https://doi.org/10.1177/0961203307084158
  18. Dai Y, Sui W, Lan H, et al (2009). Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol Int, 29, 749-54. https://doi.org/10.1007/s00296-008-0758-6
  19. de Pontual L, Yao E, Callier P, et al (2011). Germline deletion of the miR-17 approximately 92 cluster causes skeletal and growth defects in humans. Nat Genet, 43, 1026-30. https://doi.org/10.1038/ng.915
  20. Dews M, Homayouni A, Yu D, et al (2006). Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet, 38, 1060-5. https://doi.org/10.1038/ng1855
  21. Doench JG, Sharp PA (2004). Specificity of microRNA target selection in translational repression. Genes Dev, 18, 504-11. https://doi.org/10.1101/gad.1184404
  22. Dong J, Jiang G, Asmann YW, et al (2010). MicroRNA networks in mouse lung organogenesis. PLoS One, 5, 10854. https://doi.org/10.1371/journal.pone.0010854
  23. Du L, Pertsemlidis A (2012). microRNA regulation of cell viability and drug sensitivity in lung cancer. Expert Opin Biol Ther, 12, 1221-39. https://doi.org/10.1517/14712598.2012.697149
  24. Esau C, Kang X, Peralta E, et al (2004). MicroRNA-143 regulates adipocyte differentiation. J Biol Chem, 279, 52361-5. https://doi.org/10.1074/jbc.C400438200
  25. Fassina A, Cappellesso R, Fassan M (2011). Classification of non-small cell lung carcinoma in transthoracic needle specimens using microRNA expression profiling. Chest, 140, 1305-11. https://doi.org/10.1378/chest.11-0708
  26. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008). Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet, 9, 102-14.
  27. Fulci V, Scappucci G, Sebastiani GD, et al (2010). miR-223 is overexpressed in T-lymphocytes of patients affected by rheumatoid arthritis. Hum Immunol, 71, 206-11. https://doi.org/10.1016/j.humimm.2009.11.008
  28. Gao W, Xu J, Shu YQ (2011). miRNA expression and its clinical implications for the prevention and diagnosis of non-smallcell lung cancer. Expert Rev Respir Med, 5, 699-709. https://doi.org/10.1586/ers.11.55
  29. Gregory PA, Bert AG, Paterson EL, et al (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol, 10, 593-601. https://doi.org/10.1038/ncb1722
  30. Gregory RI, Shiekhattar R (2005). MicroRNA biogenesis and cancer. Cancer Res, 65, 3509-12. https://doi.org/10.1158/0008-5472.CAN-05-0298
  31. Grosshans H, Slack FJ (2002). Micro-RNAs: small is plentiful. J Cell Biol, 156, 17-21. https://doi.org/10.1083/jcb.200111033
  32. Guan P, Yin Z, Li X, et al (2012). Meta-analysis of human lung cancer microRNA expression profiling studies comparing cancer tissues with normal tissues. J Exp Clin Cancer Res, 31, 54. https://doi.org/10.1186/1756-9966-31-54
  33. Guo Q, Wang F, Lu CQ, et al (2007). The expression of transforming growth factor beta1 and its I, II receptors in the development of rat embryo and embryonic lung. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, 23, 317-9 (in Chinese).
  34. He F, Zheng LL, Luo WT, et al (2014). Inferring single nucleotide polymorphisms in microRNA binding sites of lung cancerrelated infammatory genes. Asian Pac J Cancer Prev, 15, 3601-6. https://doi.org/10.7314/APJCP.2014.15.8.3601
  35. He L, Hannon GJ (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 5, 522-31. https://doi.org/10.1038/nrg1379
  36. Herbst RS, Heymach JV, Lippman SM (2008). Lung cancer. New Engl J Med, 359, 1367-80. https://doi.org/10.1056/NEJMra0802714
  37. Hu Z, Chen X, Zhao Y, et al (2010). Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J Clin Oncol, 28, 1721-6. https://doi.org/10.1200/JCO.2009.24.9342
  38. Hu Z, Shu Y, Chen Y, et al (2011). Genetic polymorphisms in the precursor MicroRNA flanking region and non-small cell lung cancer survival. Am J Respir Crit Care Med, 183, 641-8. https://doi.org/10.1164/rccm.201005-0717OC
  39. Hughes AE, Bradley DT, Campbell M, et al (2011). Mutation altering the miR-184 seed region causes familial keratoconus with cataract. Am J Hum Genet, 89, 628-33. https://doi.org/10.1016/j.ajhg.2011.09.014
  40. Hugon J, Paquet C (2008). Targeting miRNAs in alzheimer's disease. Expert Rev Neurother, 8, 1615-6. https://doi.org/10.1586/14737175.8.11.1615
  41. Johnson SM, Grosshans H, Shingara J, et al (2005). RAS is regulated by the let-7 microRNA family. Cell, 120, 635-47. https://doi.org/10.1016/j.cell.2005.01.014
  42. Joshi S, Kotecha S (2007). Lung growth and development. Early Hum Dev, 83, 789-94. https://doi.org/10.1016/j.earlhumdev.2007.09.007
  43. Keller A, Leidinger P, Gislefoss R, et al (2011). Stable serum miRNA profiles as potential tool for non-invasive lung cancer diagnosis. RNA Biol, 8, 506-16. https://doi.org/10.4161/rna.8.3.14994
  44. Kesanakurti D, Maddirela DR, Chittivelu S, et al (2013). Suppression of tumor cell invasiveness and in vivo tumor growth by microRNA-874 in non-small cell lung cancer. Biochem Biophys Res Commun, 434, 627-33. https://doi.org/10.1016/j.bbrc.2013.03.132
  45. Kozuki T, Hisamoto A, Tabata M, et al (2007). Mutation of the epidermal growth factor receptor gene in the development of adenocarcinoma of the lung. Lung Cancer, 58, 30-5. https://doi.org/10.1016/j.lungcan.2007.04.011
  46. Kumar MS, Erkeland SJ, Pester RE, et al (2008). Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A, 105, 3903-8. https://doi.org/10.1073/pnas.0712321105
  47. Lai EC, Tomancak P, Williams RW, et al (2003). Computational identification of Drosophila microRNA genes. Genome Biol, 4, 42. https://doi.org/10.1186/gb-2003-4-7-r42
  48. Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-54. https://doi.org/10.1016/0092-8674(93)90529-Y
  49. Lee Y, Ahn C, Han J, et al (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415-9. https://doi.org/10.1038/nature01957
  50. Lee Y, Jeon K, Lee JT, et al (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 21, 4663-70. https://doi.org/10.1093/emboj/cdf476
  51. Lee YS, Dutta A (2007). The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev, 21, 1025-30. https://doi.org/10.1101/gad.1540407
  52. Li Y, Zhang D, Chen C, et al (2012). MicroRNA-212 displays tumor-promoting properties in non-small cell lung cancer cells and targets the hedgehog pathway receptor PTCH1. Mol Biol Cell, 23, 1423-34. https://doi.org/10.1091/mbc.E11-09-0777
  53. Lim LP, Lau NC, Garrett-Engele P, et al (2005). Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769-73. https://doi.org/10.1038/nature03315
  54. Lin CW, Chang YL, Chang YC, et al (2013). MicroRNA-135b promotes lung cancer metastasis by regulating multiple targets in the Hippo pathway and LZTS1. Nat Commun, 4, 1877. https://doi.org/10.1038/ncomms2876
  55. Lin PY, Yang PC (2011). Circulating miRNA signature for early diagnosis of lung cancer. EMBO Mol Med, 3, 436-7. https://doi.org/10.1002/emmm.201100155
  56. Liu J, Lu KH, Liu ZL, et al (2012a). MicroRNA-100 is a potential molecular marker of non-small cell lung cancer and functions as a tumor suppressor by targeting polo-like kinase 1. BMC Cancer, 12, 519. https://doi.org/10.1186/1471-2407-12-519
  57. Liu L, Shao X, Gao W, et al (2012b). MicroRNA-133b inhibits the growth of non-small-cell lung cancer by targeting the epidermal growth factor receptor. FEBS J, 279, 3800-12. https://doi.org/10.1111/j.1742-4658.2012.08741.x
  58. Liu X, Sempere LF, Ouyang H, et al (2010). MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest, 120, 1298-309. https://doi.org/10.1172/JCI39566
  59. Liu XH, Lu KH, Wang KM, et al (2012c). MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5. BMC Cancer, 12, 348. https://doi.org/10.1186/1471-2407-12-348
  60. Lu J, Getz G, Miska EA, et al (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834-8. https://doi.org/10.1038/nature03702
  61. Lu Y, Okubo T, Rawlins E, et al (2008). Epithelial progenitor cells of the embryonic lung and the role of microRNAs in their proliferation. Proc Am Thorac Soc, 5, 300-4. https://doi.org/10.1513/pats.200710-162DR
  62. Lukiw WJ (2007). Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus. Neuroreport, 18, 297-300. https://doi.org/10.1097/WNR.0b013e3280148e8b
  63. Lund E, Guttinger S, Calado A, et al (2004). Nuclear export of microRNA precursors. Science, 303, 95-8. https://doi.org/10.1126/science.1090599
  64. Ma L, Teruya-Feldstein J, Weinberg RA (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682-8. https://doi.org/10.1038/nature06174
  65. Markou A, Sourvinou I, Vorkas PA, et al (2013). Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer.
  66. Martino S, di Girolamo I, Orlacchio A, et al (2009). MicroRNA implications across neurodevelopment and neuropathology. J Biomed Biotechnol, 2009, 654346.
  67. Mattes J, Collison A, Foster PS (2008). Emerging role of microRNAs in disease pathogenesis and strategies for therapeutic modulation. Curr Opin Mol Ther, 10, 150-7.
  68. Mencia A, Modamio-Hoybjor S, Redshaw N, et al (2009). Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss. Nat Genet, 41, 609-13. https://doi.org/10.1038/ng.355
  69. Motsch N, Pfuhl T, Mrazek J, et al (2007). Epstein-Barr virusencoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol, 4, 131-7. https://doi.org/10.4161/rna.4.3.5206
  70. Mraz M, Pospisilova S (2012). MicroRNAs in chronic lymphocytic leukemia: from causality to associations and back. Expert Rev Hematol, 5, 579-81. https://doi.org/10.1586/ehm.12.54
  71. Mujahid S, Logvinenko T, Volpe MV, et al (2013). miRNA regulated pathways in late stage murine lung development. BMC Dev Biol, 13, 13. https://doi.org/10.1186/1471-213X-13-13
  72. Nestle FO, Kaplan DH, Barker J (2009). Psoriasis. N Engl J Med, 361, 496-509. https://doi.org/10.1056/NEJMra0804595
  73. O'Donnell KA, Wentzel EA, Zeller KI, et al (2005). c-Mycregulated microRNAs modulate E2F1 expression. Nature, 435, 839-43. https://doi.org/10.1038/nature03677
  74. Pauley KM, Cha S, Chan EK (2009). MicroRNA in autoimmunity and autoimmune diseases. J Autoimmun, 32, 189-94. https://doi.org/10.1016/j.jaut.2009.02.012
  75. Rami-Porta R, Crowley JJ, Goldstraw P (2009). The revised TNM staging system for lung cancer. Ann Thorac Cardiovasc Surg, 15, 4-9.
  76. Reinhart BJ, Slack FJ, Basson M, et al (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-6. https://doi.org/10.1038/35002607
  77. Romao JM, Jin W, Dodson MV, et al (2011). MicroRNA regulation in mammalian adipogenesis. Exp Biol Med (Maywood), 236, 997-1004. https://doi.org/10.1258/ebm.2011.011101
  78. Saito Y, Liang G, Egger G, et al (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell, 9, 435-43. https://doi.org/10.1016/j.ccr.2006.04.020
  79. Schratt G (2009). microRNAs at the synapse. Nat Rev Neurosci, 10, 842-9. https://doi.org/10.1038/nrn2763
  80. Siomi H, Siomi MC (2010). Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell, 38, 323-32. https://doi.org/10.1016/j.molcel.2010.03.013
  81. Skarn M, Namlos HM, Noordhuis P, et al (2012). Adipocyte differentiation of human bone marrow-derived stromal cells is modulated by microRNA-155, microRNA-221, and microRNA-222. Stem Cells Dev, 21, 873-83. https://doi.org/10.1089/scd.2010.0503
  82. Smalheiser NR (2003). EST analyses predict the existence of a population of chimeric microRNA precursor-mRNA transcripts expressed in normal human and mouse tissues. Genome Biol, 4, 403. https://doi.org/10.1186/gb-2003-4-7-403
  83. Sonkoly E, Wei T, Janson PC, et al (2007). MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One, 2, 610. https://doi.org/10.1371/journal.pone.0000610
  84. Sun S, Schiller JH, Gazdar AF (2007). Lung cancer in never smokers--a different disease. Nat Rev Cancer, 7, 778-90. https://doi.org/10.1038/nrc2190
  85. Suzuki HI, Yamagata K, Sugimoto K, et al (2009). Modulation of microRNA processing by p53. Nature, 460, 529-33. https://doi.org/10.1038/nature08199
  86. Tang Y, Liu D, Zhang L, et al (2011). Quantitative analysis of miRNA expression in seven human foetal and adult organs. PLoS One, 6, 28730. https://doi.org/10.1371/journal.pone.0028730
  87. Tatsuguchi M, Seok HY, Callis TE, et al (2007). Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol, 42, 1137-41. https://doi.org/10.1016/j.yjmcc.2007.04.004
  88. Thum T, Galuppo P, Wolf C, et al (2007). MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation, 116, 258-67. https://doi.org/10.1161/CIRCULATIONAHA.107.687947
  89. Tuddenham L, Jung JS, Chane-Woon-Ming B, et al (2012). Small RNA deep sequencing identifies microRNAs and other small noncoding RNAs from human herpesvirus 6B. J Virol, 86, 1638-49. https://doi.org/10.1128/JVI.05911-11
  90. van Rooij E, Sutherland LB, Liu N, et al (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A, 103, 18255-60. https://doi.org/10.1073/pnas.0608791103
  91. Wang Y, Stricker HM, Gou D, et al (2007). MicroRNA: past and present. Front Biosci, 12, 2316-29. https://doi.org/10.2741/2234
  92. Wu H, Mo YY (2009). Targeting miR-205 in breast cancer. Expert Opin Ther Targets, 13, 1439-48. https://doi.org/10.1517/14728220903338777
  93. Xu P, Guo M, Hay BA (2004). MicroRNAs and the regulation of cell death. Trends Genet, 20, 617-24. https://doi.org/10.1016/j.tig.2004.09.010
  94. Xu TP, Zhu CH, Zhang J, et al (2013). MicroRNA-155 expression has prognostic value in patients with non-small cell lung cancer and digestive system carcinomas. APJCP, 14, 7085-90. https://doi.org/10.7314/APJCP.2013.14.12.7085
  95. Yi R, Qin Y, Macara IG, et al (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev, 17, 3011-6. https://doi.org/10.1101/gad.1158803
  96. Yu SL, Chen HY, Chang GC, et al (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell, 13, 48-57. https://doi.org/10.1016/j.ccr.2007.12.008
  97. Zhang TF, Cheng KW, Shi WY, et al (2012). MiRNA synergistic network construction and enrichment analysis for common target genes in small-cell lung cancer. Asian Pac J Cancer Prev, 13, 6375-8. https://doi.org/10.7314/APJCP.2012.13.12.6375
  98. Zhao Y, Chen X, Jing M, et al (2012). Expression of miRNA- 146a in nasopharyngeal carcinoma is upregulated by Epstein-Barr virus latent membrane protein 1. Oncol Rep, 28, 1237-42.
  99. Zhao Y, Ransom JF, Li A, et al (2007). Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell, 129, 303-17. https://doi.org/10.1016/j.cell.2007.03.030
  100. Zhao Y, Samal E, Srivastava D (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature, 436, 214-20. https://doi.org/10.1038/nature03817
  101. Zhou YM, Liu J, Sun W (2014). MiR-130a overcomes geftinib resistance by targeting met in non-small cell lung cancer cell lines. Asian Pac J Cancer Prev, 15, 1391-6. https://doi.org/10.7314/APJCP.2014.15.3.1391
  102. Zuo Y, Qiang L, Farmer SR (2006). Activation of CCAAT/ enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. J Biol Chem, 281, 7960-7. https://doi.org/10.1074/jbc.M510682200

Cited by

  1. microRNA Expression Profile in Patients with Stage II Colorectal Cancer: A Turkish Referral Center Study vol.16, pp.5, 2015, https://doi.org/10.7314/APJCP.2015.16.5.1851
  2. miR-138-1* regulates aflatoxin B1-induced malignant transformation of BEAS-2B cells by targeting PDK1 vol.90, pp.5, 2016, https://doi.org/10.1007/s00204-015-1551-4
  3. Gene Expression Analysis of the Effect of Ischemic Infarction in Whole Blood vol.18, pp.11, 2017, https://doi.org/10.3390/ijms18112335
  4. Triptolide inhibits the growth of osteosarcoma by regulating microRNA-181a via targeting PTEN gene in vivo and vitro vol.39, pp.4, 2017, https://doi.org/10.1177/1010428317697556
  5. Diagnostic biomarkers for lung cancer prevention vol.12, pp.2, 2018, https://doi.org/10.1088/1752-7163/aa9386