Browse > Article
http://dx.doi.org/10.4014/jmb.1707.07029

Epigenetic Control of Oxidative Stresses by Histone Acetyltransferases in Candida albicans  

Kim, Jueun (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Park, Shinae (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Lee, Jung-Shin (Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.2, 2018 , pp. 181-189 More about this Journal
Abstract
Candida albicans is a major pathogenic fungus in humans, and meets at first the innate immune cells, such as macrophages, in its host. One important strategy of the host cell to kill C. albicans is to produce reactive oxygen species (ROS) by the macrophages. In response to ROS produced by the macrophages, C. albicans operates its defense mechanisms against them by expressing its oxidative stress response genes. Although there have been many research studies explaining the specific transcription factors and the expression of the oxidative stress genes in C. albicans, the regulation of the oxidative stress genes by chromatin structure is little known. Epigenetic regulation by the chromatin structure is very important for the regulation of eukaryotic gene expression, including the chromatin structure dynamics by histone modifications. Among various histone modifications, histone acetylation is reported for its direct relationship to the regulation of gene expression. Recent studies reported that histone acetyltransferases regulate genes to respond to the oxidative stress in C. albicans. In this review, we introduce all histone acetyltransferases that C. albicans contains and some papers that explain how histone acetyltransferases participate in the oxidative stress response in C. albicans.
Keywords
Candida albicans; oxidative stress response; histone acetyltransferase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Millar CB, Xu F, Zhang K, Grunstein M. 2006. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev. 20: 711-722.   DOI
2 Morris SA, Rao B, Garcia BA, Hake SB, Diaz RL, Shabanowitz J, et al. 2007. Identification of histone H3 lysine 36 acetylation as a highly conserved histone modification. J. Biol. Chem. 282: 7632-7640.   DOI
3 Enguita JF, Costa CM, Fusco-Almeida M, Mendes-Giannini J, Leitao LA. 2016. Transcriptomic crosstalk between fungal invasive pathogens and their host cells: opportunities and challenges for next-generation sequencing methods. J. Fungi 2: 7.   DOI
4 Dantas DA, Day A, Ikeh M, Kos I, Achan B, Quinn J. 2015. Oxidative stress responses in the human fungal pathogen, Candida albicans. Biomolecules 5: 142-165.
5 Baek Y, Kim Y, Yim H, Kang S. 2004. Disruption of ${\gamma}$-glutamylcysteine synthetase results in absolute glutathione auxotrophy and apoptosis in Candida albicans. FEBS Lett. 556: 47-52.   DOI
6 Hwang C, Rhie G, Oh J, Huh W, Y im H, Kang S. 2002. Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology 148: 3705-3713.
7 Chang P, Fan X, Chen J. 2015. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans. Fungal Genet. Biol. 81: 132-141.   DOI
8 da Rosa L, Boyartchuk VL, Zhu LJ, Kaufman PD. 2010. Histone acetyltransferase Rtt109 is required for Candida albicans pathogenesis. Proc. Natl. Acad. Sci. USA 107: 1594-1599.   DOI
9 Tscherner M, Zwolanek F, Jenull S, Sedlazeck FJ, Petryshyn A, Frohner IE, et al. 2015. The Candida albicans histone acetyltransferase Hat1 regulates stress resistance and virulence via distinct chromatin assembly pathways. PLoS Pathog. 11: e1005218.   DOI
10 Lee KK, Workman JL. 2007. Histone acetyltransferase complexes: one size doesn't fit all. Nat. Rev. Mol. Cell Biol. 8: 284-295.   DOI
11 Sudbery PE. 2011. Growth of Candida albicans hyphae. Nat. Rev. Microbiol. 9: 737-748.   DOI
12 Lu Y, Su C, Mao X, Raniga PP, Liu H, Chen J. 2008. Efg1-mediated recruitment of NuA4 to promoters is required for hypha-specific Swi/Snf binding and activation in Candida albicans. Mol. Biol. Cell 19: 4260-4272.
13 Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21: 381-395.   DOI
14 Wysong DR, Christin L, Sugar AM, Robbins PW, Diamond RD. 1998. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene. Infect. Immun. 66: 1953-1961.
15 Kornberg RD. 1974. Chromatin structure: a repeating unit of histones and DNA. Science 184: 868.   DOI
16 Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-260.   DOI
17 Grunstein M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349-352.
18 Marmorstein R, Zhou M. 2014. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harb. Perspect. Biol. 6: a018762.
19 Roth SY, Denu JM, Allis CD. 2001. Histone acetyltransferases. Annu. Rev. Biochem. 70: 81-120.   DOI
20 Shahbazian MD, Grunstein M. 2007. Functions of sitespecific histone acetylation and deacetylation. Annu. Rev. Biochem. 76: 75-100.   DOI
21 Sterner DE, Berger SL. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64: 435-459.   DOI
22 Sellam A, Askew C, Epp E, Lavoie H, Whiteway M, Nantel A. 2009. Genome-wide mapping of the coactivator Ada2p yields insight into the functional roles of SAGA/ADA complex in Candida albicans. Mol. Biol. Cell 20: 2389-2400.   DOI
23 Candau R, Z hou JX, Allis C D, Berger SL. 1997. H istone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16: 555-565.   DOI
24 Osada S, Sutton A, Muster N, Brown CE, Yates JR, Sternglanz R, Workman JL. 2001. The yeast SAS (something about silencing) protein complex contains a MYST-type putative acetyltransferase and functions with chromatin assembly factor ASF1. Genes Dev. 15: 3155-3168.   DOI
25 Shia W, Osada S, Florens L, Swanson SK, Washburn MP, Workman JL. 2005. Characterization of the yeast trimeric-SAS acetyltransferase complex. J. Biol. Chem. 280: 11987-11994.
26 Li F, Lu J, Han Q, Zhang G, Huang B. 2005. The Elp3 subunit of human Elongator complex is functionally similar to its counterpart in yeast. Mol. Genet. Genomics 273: 264-272.   DOI
27 Angus-Hill ML, Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V. 1999. Crystal structure of the histone acetyltransferase Hpa2: a tetrameric member of the Gcn5-related N-acetyltransferase superfamily. J. Mol. Biol. 294: 1311-1325.
28 Grant PA, Duggan L, Cote J, Roberts SM, Brownell JE, Candau R, et al. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11: 1640-1650.   DOI
29 Larschan E, Winston F. 2001. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4. Genes Dev. 15: 1946-1956.   DOI
30 Wang Y, Cao Y, Jia X, Cao Y, Gao P, Fu X, et al. 2006. Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Rad. Biol. Med. 40: 1201-1209.   DOI
31 Moye-Rowley W. 2003. Regulation of the transcriptional response to oxidative stress in fungi: similarities and differences. Eukaryot. Cell 2: 381-389.   DOI
32 Ramirez-Zavala B, Mogavero S, Scholler E, Sasse C, Rogers PD, Morschhauser J. 2014. SAGA/ADA complex subunit Ada2 is required for Cap1- but not Mrr1-mediated upregulation of the Candida albicans multidrug efflux pump MDR1. Antimicrob. Agents Chemother. 58: 5102-5110.   DOI
33 Driscoll R, Hudson A, Jackson SP. 2007. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315: 649.   DOI
34 Winkler GS, Kristjuhan A, Erdjument-Bromage H, Tempst P, Svejstrup JQ. 2002. Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo. Proc. Natl. Acad. Sci. USA 99: 3517-3522.   DOI
35 Kimura A, Umehara T, Horikoshi M. 2002. Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat. Genet. 32: 370-377.   DOI
36 Suka N, Luo K, Grunstein M. 2002. Sir2p and Sas2p opposingly regulate acetylation of yeast histone H4 lysine16 and spreading of heterochromatin. Nat. Genet. 32: 378-383.
37 Tscherner M, Stappler E, Hnisz D, Kuchler K. 2012. The histone acetyltransferase Hat1 facilitates DNA damage repair and morphogenesis in Candida albicans. Mol. Microbiol. 86: 1197-1214.   DOI
38 Schneider J, Bajwa P, Johnson FC, Bhaumik SR, Shilatifard A. 2006. Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J. Biol. Chem. 281: 37270-37274.
39 Wang X, Chang P, Ding J, Chen J. 2013. Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans. Eukaryot. Cell 12: 438-449.   DOI
40 Wittschieben BO, Otero G, de Bizemont T, Fellows J, Erdjument-Bromage H, Ohba R, et al. 1999. A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell 4: 123-128.   DOI
41 Dahlin JL, Chen X, Walters MA, Zhang Z. 2015. Histonemodifying enzymes, histone modifications and histone chaperones in nucleosome assembly: lessons learned from Rtt109 histone acetyltransferases. Crit. Rev. Biochem. Mol. Biol. 50: 31-53.   DOI
42 Poveda A, Pamblanco M, Tafrov S, Tordera V, Sternglanz R, Sendra R. 2004. Hif1 is a component of yeast histone acetyltransferase B, a complex mainly localized in the nucleus. J. Biol. Chem. 279: 16033-16043.   DOI
43 Ge Z, Wang H, Parthun MR. 2011. Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly. J. Biol. Chem. 286: 16790-16799.   DOI
44 Verzijlbergen KF, van Welsem T, Sie D, Lenstra TL, Turner DJ, Holstege FCP, et al. 2011. A barcode screen for epigenetic regulators reveals a role for the NuB4/HAT-B histone acetyltransferase complex in histone turnover. PLoS Genet. 7: e1002284.   DOI
45 Mahalingaiah PKS, Ponnusamy L, Singh KP. 2016. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget 8: 11127-11143.
46 Bennett CB, Lewis LK, Karthikeyan G, Lobachev KS, Jin YH, Sterling JF, et al. 2001. Genes required for ionizing radiation resistance in yeast. Nat. Genet. 29: 426-434.   DOI
47 Li S, Shogren-Knaak M. 2009. The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J. Biol. Chem. 284: 9411-9417.   DOI
48 Suka N, Suka Y, Carmen AA, Wu J, Grunstein M. 2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8: 473-479.   DOI
49 Allard S, Utley RT, Savard J, Clarke A, Grant P, Brandl CJ, et al. 1999. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18: 5108.   DOI
50 Searle NE, Torres-Machorro A, Pillus L. 2017. Chromatin regulation by the NuA4 acetyltransferase complex is mediated by essential interactions between enhancer of polycomb (Epl1) and Esa1. Genetics 205: 1125.   DOI
51 Keogh M, Mennella TA, Sawa C, Berthelet S, Krogan NJ, Wolek A, et al. 2006. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev. 20: 660-665.   DOI
52 Meijsing SH, Ehrenhofer-Murray A. 2001. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae. Genes Dev. 15: 3169-3182.   DOI
53 Gilbert TM, McDaniel SL, Byrum SD, Cades JA, Dancy BCR, Wade H, et al. 2014. A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol. Cell. Proteomics 13: 2883-2895.   DOI
54 Sampath V, Liu B, Tafrov S, Srinivasan M, Rieger R, Chen EI, Sternglanz R. 2013. Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae. J. Biol. Chem. 288: 21506-21513.   DOI
55 Han J, Zhou H, Horazdovsky B, Zhang K, Xu R, Zhang Z. 2007. Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315: 653.   DOI
56 Komalapriya C, Kaloriti D, Tillmann AT, Yin Z, Herrero-de-Dios C, Jacobsen MD, et al. 2015. Integrative model of oxidative stress adaptation in the fungal pathogen Candida albicans. PLoS One 10: e0137750   DOI
57 John S, Howe L, Tafrov ST, Grant PA, Sternglanz R, Workman JL. 2000. The Something About Silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAFII30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev. 14: 1196-1208.
58 Taverna SD, Ilin S, Rogers RS, Tanny JC, Lavender H, Li H, et al. 2006. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol. Cell 24: 785-796.
59 Parthun MR, Widom J, Gottschling DE. 1996. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87: 85-94.   DOI
60 Berman J, Sudbery PE. 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat. Rev. Genet. 3: 918-932.
61 de Nadal E, Ammerer G, Posas F. 2011. Controlling gene expression in response to stress. Nat. Rev. Genet. 12: 833-845.   DOI
62 van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 2014. Ten years of next-generation sequencing technology. Trends Genet. 30: 418-426.   DOI
63 Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10: 57-63.   DOI