DOI QR코드

DOI QR Code

Cell line-specific features of 3D chromatin organization in hepatocellular carcinoma

  • Yeonwoo Kim (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Hyeokjun Yang (Department of Biological Sciences, Korea Advanced Institute of Science and Technology) ;
  • Daeyoup Lee (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
  • Received : 2023.03.13
  • Accepted : 2023.04.14
  • Published : 2023.06.30

Abstract

Liver cancer, particularly hepatocellular carcinoma (HCC), poses a significant global threat to human lives. To advance the development of innovative diagnostic and treatment approaches, it is essential to examine the hidden features of HCC, particularly its 3D genome architecture, which is not well understood. In this study, we investigated the 3D genome organization of four HCC cell lines-Hep3B, Huh1, Huh7, and SNU449-using in situ Hi-C and assay for transposase-accessible chromatin sequencing. Our findings revealed that HCC cell lines had more long-range interactions, both intra-and interchromosomal, compared to human mammary epithelial cells (HMECs). Unexpectedly, HCC cell lines displayed cell line-specific compartmental modifications at the megabase (Mb) scale, which could potentially be leveraged in determining HCC subtypes. At the sub-Mb scale, we observed decreases in intra-TAD (topologically associated domain) interactions and chromatin loops in HCC cell lines compared to HMECs. Lastly, we discovered a correlation between gene expression and the 3D chromatin architecture of SLC8A1, which encodes a sodium-calcium antiporter whose modulation is known to induce apoptosis by comparison between HCC cell lines and HMECs. Our findings suggest that HCC cell lines have a distinct 3D genome organization that is different from those of normal and other cancer cells based on the analysis of compartments, TADs, and chromatin loops. Overall, we take this as evidence that genome organization plays a crucial role in cancer phenotype determination. Further exploration of epigenetics in HCC will help us to better understand specific gene regulation mechanisms and uncover novel targets for cancer treatment.

Keywords

Acknowledgement

We sincerely thank Professor Kyung Hyun Yoo of Sookmyung Women's University for providing the four HCC cell lines, which were instrumental in this work. This research was supported by a National Research Foundation (NRF) grant funded by the Korean government (MSIT) (No. 2022R1A2C3003115) and by an NRF grant funded by the Ministry of Science and ICT (MSIT) (2018R1A5A1024261, SRC).

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin 2022;72:7-33. https://doi.org/10.3322/caac.21708
  2. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology 2007;132:2557-2576. https://doi.org/10.1053/j.gastro.2007.04.061
  3. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R. Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 2020;1873:188314.
  4. Yang JD, Hainaut P, Gores GJ, Amadou A, Plymoth A, Roberts LR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019;16:589-604. https://doi.org/10.1038/s41575-019-0186-y
  5. Torbenson MS. Hepatocellular carcinoma: making sense of morphological heterogeneity, growth patterns, and subtypes. Hum Pathol 2021;112:86-101. https://doi.org/10.1016/j.humpath.2020.12.009
  6. Bidkhori G, Benfeitas R, Klevstig M, Zhang C, Nielsen J, Uhlen M, et al. Metabolic network-based stratification of hepatocellular carcinoma reveals three distinct tumor subtypes. Proc Natl Acad Sci U S A 2018;115:E11874-E11883. https://doi.org/10.1073/pnas.1807305115
  7. Chaisaingmongkol J, Budhu A, Dang H, Rabibhadana S, Pupacdi B, Kwon SM, et al. Common molecular subtypes among Asian hepatocellular carcinoma and cholangiocarcinoma. Cancer Cell 2017;32:57-70. https://doi.org/10.1016/j.ccell.2017.05.009
  8. Woo HG, Choi JH, Yoon S, Jee BA, Cho EJ, Lee JH, et al. Integrative analysis of genomic and epigenomic regulation of the transcriptome in liver cancer. Nat Commun 2017;8:839.
  9. Cavalli G, Misteli T. Functional implications of genome topology. Nat Struct Mol Biol 2013;20:290-299. https://doi.org/10.1038/nsmb.2474
  10. Bonev B, Cavalli G. Organization and function of the 3D genome. Nat Rev Genet 2016;17:661-678. https://doi.org/10.1038/nrg.2016.112
  11. Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014;159:1665-1680. https://doi.org/10.1016/j.cell.2014.11.021
  12. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012;485:376-380. https://doi.org/10.1038/nature11082
  13. Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 2012;485:381-385. https://doi.org/10.1038/nature11049
  14. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012;148:458-472. https://doi.org/10.1016/j.cell.2012.01.010
  15. Merkenschlager M, Nora EP. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev Genomics Hum Genet 2016;17:17-43. https://doi.org/10.1146/annurev-genom-083115-022339
  16. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen CJ, Vert JP, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 2015;16:259.
  17. Abdennur N, Abraham S, Fudenberg G, Flyamer IM, Galitsyna AA, Goloborodko A, et al. Cooltools: enabling high-resolution Hi-C analysis in Python. Preprint at: https://doi.org/10.1101/2022.10.31.514564 (2022).
  18. Zhan Y, Mariani L, Barozzi I, Schulz EG, Bluthgen N, Stadler M, et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res 2017;27:479-490. https://doi.org/10.1101/gr.212803.116
  19. van der Weide RH, van den Brand T, Haarhuis JH, Teunissen H, Rowland BD, de Wit E. Hi-C analyses with GENOVA: a case study with cohesin variants. Preprint at: https://doi.org/10.1101/2021.01.22.427620 (2021).
  20. Durand NC, Shamim MS, Machol I, Rao SS, Huntley MH, Lander ES, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 2016;3:95-98. https://doi.org/10.1016/j.cels.2016.07.002
  21. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10-2. https://doi.org/10.14806/ej.17.1.200
  22. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357-359. https://doi.org/10.1038/nmeth.1923
  23. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  24. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012;28:2184-2185. https://doi.org/10.1093/bioinformatics/bts356
  25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21. https://doi.org/10.1093/bioinformatics/bts635
  26. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and quantification by RNASeq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511-515. https://doi.org/10.1038/nbt.1621
  27. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012;7:562-578. https://doi.org/10.1038/nprot.2012.016
  28. Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat 2011;3:180-185. https://doi.org/10.1002/wics.147
  29. Saldanha AJ. Java Treeview: extensible visualization of microarray data. Bioinformatics 2004;20:3246-3248. https://doi.org/10.1093/bioinformatics/bth349
  30. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 2013;14:178-192. https://doi.org/10.1093/bib/bbs017
  31. Qiu Z, Li H, Zhang Z, Zhu Z, He S, Wang X, et al. A pharmacogenomic landscape in human liver cancers. Cancer Cell 2019;36: 179-193. https://doi.org/10.1016/j.ccell.2019.07.001
  32. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012;489:57-74. https://doi.org/10.1038/nature11247
  33. Wu P, Li T, Li R, Jia L, Zhu P, Liu Y, et al. 3D genome of multiple myeloma reveals spatial genome disorganization associated with copy number variations. Nat Commun 2017;8:1937.
  34. Chen L, Zhou W, Zhang L, Zhang F. Genome architecture and its roles in human copy number variation. Genomics Inform 2014;12:136-144. https://doi.org/10.5808/GI.2014.12.4.136
  35. Chakraborty A, Ay F. Identification of copy number variations and translocations in cancer cells from Hi-C data. Bioinformatics 2018;34:338-345. https://doi.org/10.1093/bioinformatics/btx664
  36. Gassler J, Brandao HB, Imakaev M, Flyamer IM, Ladstatter S, Bickmore WA, et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J 2017;36:3600-3618. https://doi.org/10.15252/embj.201798083
  37. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of longrange interactions reveals folding principles of the human genome. Science 2009;326:289-293. https://doi.org/10.1126/science.1181369
  38. Boyault S, Rickman DS, de Reynies A, Balabaud C, Rebouissou S, Jeannot E, et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007;45:42-52. https://doi.org/10.1002/hep.21467
  39. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 2013;31:46-53. https://doi.org/10.1038/nbt.2450
  40. Hoshida Y, Nijman SM, Kobayashi M, Chan JA, Brunet JP, Chiang DY, et al. Integrative transcriptome analysis reveals common molecular subclasses of human hepatocellular carcinoma. Cancer Res 2009;69:7385-7392. https://doi.org/10.1158/0008-5472.CAN-09-1089
  41. Caruso S, Calatayud AL, Pilet J, La Bella T, Rekik S, Imbeaud S, et al. Analysis of liver cancer cell lines identifies agents with likely efficacy against hepatocellular carcinoma and markers of response. Gastroenterology 2019;157:760-776. https://doi.org/10.1053/j.gastro.2019.05.001
  42. Wang H, Wang X, Xu L, Lin Y, Zhang J, Cao H. Low expression of CDHR1 is an independent unfavorable prognostic factor in glioma. J Cancer 2021;12:5193-5205. https://doi.org/10.7150/jca.59948
  43. Nishida N, Goel A. Genetic and epigenetic signatures in human hepatocellular carcinoma: a systematic review. Curr Genomics 2011;12:130-137. https://doi.org/10.2174/138920211795564359
  44. Nagaraju GP, Dariya B, Kasa P, Peela S, El-Rayes BF. Epigenetics in hepatocellular carcinoma. Semin Cancer Biol 2022;86:622-632. https://doi.org/10.1016/j.semcancer.2021.07.017
  45. Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2014;342:223-230. https://doi.org/10.1016/j.canlet.2012.01.038
  46. Munoz JJ, Drigo SA, Barros-Filho MC, Marchi FA, Scapulatempo-Neto C, Pessoa GS, et al. Down-regulation of SLC8A1 as a putative apoptosis evasion mechanism by modulation of calcium levels in penile carcinoma. J Urol 2015;194:245-251. https://doi.org/10.1016/j.juro.2014.11.097
  47. He H, Wu S, Ai K, Xu R, Zhong Z, Wang Y, et al. LncRNA ZNF503-AS1 acts as a tumor suppressor in bladder cancer by up-regulating Ca(2+) concentration via transcription factor GATA6. Cell Oncol (Dordr) 2021;44:219-233. https://doi.org/10.1007/s13402-020-00563-z
  48. Diaz-Horta O, Van Eylen F, Herchuelz A. Na/Ca exchanger overexpression induces endoplasmic reticulum stress, caspase-12 release, and apoptosis. Ann N Y Acad Sci 2003;1010:430-432. https://doi.org/10.1196/annals.1299.077
  49. Kim T, Han S, Chun Y, Yang H, Min H, Jeon SY, et al. Comparative characterization of 3D chromatin organization in triple-negative breast cancers. Exp Mol Med 2022;54:585-600. https://doi.org/10.1038/s12276-022-00768-2
  50. Ertel A, Verghese A, Byers SW, Ochs M, Tozeren A. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol Cancer 2006;5:55.
  51. Chang TT, Hughes-Fulford M. Monolayer and spheroid culture of human liver hepatocellular carcinoma cell line cells demonstrate distinct global gene expression patterns and functional phenotypes. Tissue Eng Part A 2009;15:559-567. https://doi.org/10.1089/ten.tea.2007.0434
  52. Barbosa MA, Xavier CP, Pereira RF, Petrikaite V, Vasconcelos MH. 3D cell culture models as recapitulators of the tumor micro-environment for the screening of anti-cancer drugs. Cancers (Basel) 2021;14:190.