• 제목/요약/키워드: cell senescence

검색결과 192건 처리시간 0.033초

Senescence as A Consequence of Ginsenoside Rg1 Response on K562 Human Leukemia Cell Line

  • Liu, Jun;Cai, Shi-Zhong;Zhou, Yue;Zhang, Xian-Ping;Liu, Dian-Feng;Jiang, Rong;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6191-6196
    • /
    • 2012
  • Aims and Background: Traditional chemotherapy strategies for human leukemia commonly use drugs based on cytotoxicity to eradicate cancer cells. One predicament is that substantial damage to normal tissues is likely to occur in the course of standard treatments. Obviously, it is urgent to explore therapies that can effectively eliminate malignant cells without affecting normal cells. Our previous studies indicated that ginsenoside $Rg_1$ ($Rg_1$), a major active pharmacological ingredient of ginseng, could delay normal hematopoietic stem cell senescence. However, whether $Rg_1$ can induce cancer cell senescence is still unclear. Methods: In the current study, human leukemia K562 cells were subjected to $Rg_1$ exposure. The optimal drug concentration and duration with K562 cells was obtained by MTT colorimetric test. Effects of $Rg_1$ on cell cycle were analyzed using flow cytometry and by SA-${\beta}$-Gal staining. Colony-forming ability was measured by colony-assay. Telomere lengths were assessed by Southern blotting and expression of senescence-associated proteins P21, P16 and RB by Western blotting. Ultrastructural morphology changes were observed by transmission electron microscopy. Results: K562 cells demonstrated a maximum proliferation inhibition rate with an $Rg_1$ concentration of $20{\mu}\;mol{\cdot}L^{-1}$ for 48h, the cells exhibiting dramatic morphological alterations including an enlarged and flat cellular morphology, larger mitochondria and increased number of lysosomes. Senescence associated-${\beta}$-galactosidase (SA-${\beta}$-Gal) activity was increased. K562 cells also had decreased ability for colony formation, and shortened telomere length as well as reduction of proliferating potential and arrestin $G_2$/M phase after $Rg_1$ interaction. The senescence associated proteins P21, P16 and RB were significantly up-regulated. Conclusion: Ginsenoside $Rg_1$ can induce a state of senescence in human leukemia K562 cells, which is associated with p21-Rb and p16-Rb pathways.

Regulations of Reversal of Senescence by PKC Isozymes in Response to 12-O-Tetradecanoylphorbol-13-Acetate via Nuclear Translocation of pErk1/2

  • Lee, Yun Yeong;Ryu, Min Sook;Kim, Hong Seok;Suganuma, Masami;Song, Kye Yong;Lim, In Kyoung
    • Molecules and Cells
    • /
    • 제39권3호
    • /
    • pp.266-279
    • /
    • 2016
  • The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) bypasses cellular senescence was investigated using human diploid fibroblast (HDF) cell replicative senescence as a model. Upon TPA treatment, protein kinase C (PKC) ${\alpha}$ and $PKC{\beta}1$ exerted differential effects on the nuclear translocation of cytoplasmic pErk1/2, a protein which maintains senescence. $PKC{\alpha}$ accompanied pErk1/2 to the nucleus after freeing it from $PEA-15pS^{104}$ via $PKC{\beta}1$ and then was rapidly ubiquitinated and degraded within the nucleus. Mitogen-activated protein kinase docking motif and kinase activity of $PKC{\alpha}$ were both required for pErk1/2 transport to the nucleus. Repetitive exposure of mouse skin to TPA downregulated $PKC{\alpha}$ expression and increased epidermal and hair follicle cell proliferation. Thus, $PKC{\alpha}$ downregulation is accompanied by in vivo cell proliferation, as evidenced in 7, 12-dimethylbenz(a)anthracene (DMBA)-TPA-mediated carcinogenesis. The ability of TPA to reverse senescence was further demonstrated in old HDF cells using RNA-sequencing analyses in which TPA-induced nuclear $PKC{\alpha}$ degradation freed nuclear pErk1/2 to induce cell proliferation and facilitated the recovery of mitochondrial energy metabolism. Our data indicate that TPA-induced senescence reversal and carcinogenesis promotion share the same molecular pathway. Loss of $PKC{\alpha}$ expression following TPA treatment reduces pErk1/2-activated SP1 biding to the $p21^{WAF1}$ gene promoter, thus preventing senescence onset and overcoming G1/S cell cycle arrest in senescent cells.

Cordycepin에 의한 피부 섬유아세포 세포노쇠화 개선효과 (Suppression of Cellular Senescence by Cordycepin in Replicative Aged Human Dermal Fibroblasts)

  • 김효진;이소영;김도형;진무현;노석선;김형민;최인화;이명수;이상화
    • 대한화장품학회지
    • /
    • 제41권2호
    • /
    • pp.135-141
    • /
    • 2015
  • 세포 노쇠화(cell senescence)는 나이 듦에 따른 내인성 노화 및 질병들에서 나타날 수 있는 세포의 노화인자 발현, 세포분열 정지 등의 현상으로 일컬어진다. 피부세포의 경우, 노화 및 외부요인으로 인한 세포 노쇠화가 일어나 세포분열의 정지 및 기능 이상이 관찰되며 이는 피부노화를 가속화시키는 요인이 된다. 본 연구에서는, cordycepin을 이용하여 노화된 피부세포의 세포 노쇠화 억제 및 기능 향상을 유도하여 피부노화 개선의 가능성을 제시하였다. 사람에서 유래한 섬유아세포를 이용하여 세포의 ${\beta}$-galactosidase 활성 세포염색 결과, 많은 계대의 세포에서 발현이 높게 나타남을 알 수 있었다. 항산화 및 항염 효과가 알려진 cordycepin을 많은 계대의 세포에 처리하였을 때 ${\beta}$-galactosidase 활성이 확연히 떨어짐을 확인하였고 무혈청 배지 조건에서 많은 계대 세포의 증식 및 생존율을 높이는 결과를 보였으며 세포 노쇠화와 많은 연관성이 대두되고 있는 미토콘드리아의 기능관련 실험을 진행한 결과, 높은 ROS억제능이 나타났다. 본 연구를 통하여 노화된 사람 피부 섬유아세포에서의 cordycepin의 세포 노화 개선능을 알 수 있었으며, 피부 항노화소재로서의 가능성을 확인하였다.

Transcriptional Heterogeneity of Cellular Senescence in Cancer

  • Junaid, Muhammad;Lee, Aejin;Kim, Jaehyung;Park, Tae Jun;Lim, Su Bin
    • Molecules and Cells
    • /
    • 제45권9호
    • /
    • pp.610-619
    • /
    • 2022
  • Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.

Dynamics of ARF regulation that control senescence and cancer

  • Ko, Aram;Han, Su Yeon;Song, Jaewhan
    • BMB Reports
    • /
    • 제49권11호
    • /
    • pp.598-606
    • /
    • 2016
  • ARF is an alternative reading frame product of the INK4a/ARF locus, inactivated in numerous human cancers. ARF is a key regulator of cellular senescence, an irreversible cell growth arrest that suppresses tumor cell growth. It functions by sequestering MDM2 (a p53 E3 ligase) in the nucleolus, thus activating p53. Besides MDM2, ARF has numerous other interacting partners that induce either cellular senescence or apoptosis in a p53-independent manner. This further complicates the dynamics of the ARF network. Expression of ARF is frequently disrupted in human cancers, mainly due to epigenetic and transcriptional regulation. Vigorous studies on various transcription factors that either positively or negatively regulate ARF transcription have been carried out. However, recent focus on posttranslational modifications, particularly ubiquitination, indicates wider dynamic controls of ARF than previously known. In this review, we discuss the role and dynamic regulation of ARF in senescence and cancer.

Metabolic features and regulation in cell senescence

  • Kwon, So Mee;Hong, Sun Mi;Lee, Young-Kyoung;Min, Seongki;Yoon, Gyesoon
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.5-12
    • /
    • 2019
  • Organismal aging is accompanied by a host of progressive metabolic alterations and an accumulation of senescent cells, along with functional decline and the appearance of multiple diseases. This implies that the metabolic features of cell senescence may contribute to the organism's metabolic changes and be closely linked to age-associated diseases, especially metabolic syndromes. However, there is no clear understanding of senescent metabolic characteristics. Here, we review key metabolic features and regulators of cellular senescence, focusing on mitochondrial dysfunction and anabolic deregulation, and their link to other senescence phenotypes and aging. We further discuss the mechanistic involvement of the metabolic regulators mTOR, AMPK, and GSK3, proposing them as key metabolic switches for modulating senescence.

Korean Red ginseng prevents endothelial senescence by downregulating the HO-1/NF-κB/miRNA-155-5p/eNOS pathway

  • Kim, Tae-Hoon;Kim, Ji-Yoon;Bae, Jieun;Kim, Young-Mi;Won, Moo-Ho;Ha, Kwon-Soo;Kwon, Young-Guen;Kim, Young-Myeong
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.344-353
    • /
    • 2021
  • Background: Korean Red ginseng extract (KRGE) has beneficial effects on the cardiovascular system by improving endothelial cell function. However, its pharmacological effect on endothelial cell senescence has not been clearly elucidated. Therefore, we examined the effect and molecular mechanism of KRGE on the senescence of human umbilical vein endothelial cells (HUVECs). Methods: HUVECs were grown in normal or KRGE-supplemented medium. Furthermore, they were transfected with heme oxygenase-1 (HO-1) gene or treated with its inhibitor, a NF-κB inhibitor, and a miR-155-5p mimic or inhibitor. Senescence-associated characteristics of endothelial cells were determined by biochemical and immunohistochemical analyses. Results: Treatment of HUVECs with KRGE resulted in delayed onset and progression of senescence-associated characteristics, such as increased lysosomal acidic β-galactosidase and decreased telomerase activity, angiogenic dysfunction, and abnormal cell morphology. KRGE preserved the levels of anti-senescent factors, such as eNOS-derived NO, MnSOD, and cyclins D and A: however, it decreased the levels of senescence-promoting factors, such as ROS, activated NF-κB, endothelial cell inflammation, and p21 expression. The beneficial effects of KRGE were due to the induction of HO-1 and the inhibition of NF-κB-dependent biogenesis of miR-155-5p that led to the downregulation of eNOS. Moreover, treatment with inhibitors of HO-1, NF-κB, and miR-155-5p abolished the anti-senescence effects of KRGE. Conclusion: KRGE delayed or prevented HUVEC senescence through a signaling cascade involving the induction of HO-1, the inhibition of NF-κB-dependent miR-155-5p biogenesis, and the maintenance of the eNOS/NO axis activity, suggesting that it may protect against vascular diseases associated with endothelial senescence.

High Dose of FGF-2 Induced Growth Retardation via ERK1/2 De-phosphorylation in Bone Marrow-derived Mesenchymal Stem Cells

  • Shim, Kwang Yong;Saima, Fatema Tuj;Eom, Young Woo
    • 대한의생명과학회지
    • /
    • 제23권2호
    • /
    • pp.49-56
    • /
    • 2017
  • Fibroblast growth factor (FGF)-2 is one of the most effective growth factors to increase the growth rate of mesenchymal stem cells (MSCs). Previously, we reported that low dose of FGF-2 (1 ng/ml) induced proliferation of bone marrow-derived mesenchymal stem cells (BMSCs) through AKT and ERK activation resulting in reduction of autophagy and senescence, but not at a high dose. In this study, we investigated the effects of high dose FGF-2 (10 ng/ml) on proliferation, autophagy and senescence of BMSCs for long term cultures (i.e., 2 months). FGF-2 increased the growth rate of BMSCs in a dose dependent manner for a short term (3 days), while during long term cultures (2 months), population doubling time was increased and accumulated cell number was lower than control in BMSCs when cultured with 10 ng/ml of FGF-2. 10 ng/ml of FGF-2 induced immediate de-phosphorylation of ERK1/2, expression of LC3-II, and increase of senescence associated ${\beta}$-galactosidase (SA-${\beta}$-Gal, senescence marker) expression. In conclusion, we showed that 10 ng/ml of FGF-2 was inadequate for ex vivo expansion of BMSCs because 10 ng/ml of FGF-2 induced growth retardation via ERK1/2 de-phosphorylation and induction of autophagy and senescence in BMSCs.

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes

  • Bang, Minji;Kim, Do Gyeong;Gonzales, Edson Luck;Kwon, Kyoung Ja;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.530-539
    • /
    • 2019
  • Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.