Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.151

Etoposide Induces Mitochondrial Dysfunction and Cellular Senescence in Primary Cultured Rat Astrocytes  

Bang, Minji (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Kim, Do Gyeong (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Gonzales, Edson Luck (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Kwon, Kyoung Ja (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Shin, Chan Young (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.27, no.6, 2019 , pp. 530-539 More about this Journal
Abstract
Brain aging is an inevitable process characterized by structural and functional changes and is a major risk factor for neurodegenerative diseases. Most brain aging studies are focused on neurons and less on astrocytes which are the most abundant cells in the brain known to be in charge of various functions including the maintenance of brain physical formation, ion homeostasis, and secretion of various extracellular matrix proteins. Altered mitochondrial dynamics, defective mitophagy or mitochondrial damages are causative factors of mitochondrial dysfunction, which is linked to age-related disorders. Etoposide is an anti-cancer reagent which can induce DNA stress and cellular senescence of cancer cell lines. In this study, we investigated whether etoposide induces senescence and functional alterations in cultured rat astrocytes. Senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) activity was used as a cellular senescence marker. The results indicated that etoposide-treated astrocytes showed cellular senescence phenotypes including increased SA-${\beta}$-gal-positive cells number, increased nuclear size and increased senescence-associated secretory phenotypes (SASP) such as IL-6. We also observed a decreased expression of cell cycle markers, including PhosphoHistone H3/Histone H3 and CDK2, and dysregulation of cellular functions based on wound-healing, neuronal protection, and phagocytosis assays. Finally, mitochondrial dysfunction was noted through the determination of mitochondrial membrane potential using tetramethylrhodamine methyl ester (TMRM) and the measurement of mitochondrial oxygen consumption rate (OCR). These data suggest that etoposide can induce cellular senescence and mitochondrial dysfunction in astrocytes which may have implications in brain aging and neurodegenerative conditions.
Keywords
Astrocytes; Energy homeostasis; Mitochondria; Cellular Senescence; Phagocytosis; Wound Healing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abbott, N. J. (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200, 629-638.   DOI
2 Amodeo, A. A. and Skotheim, J. M. (2016) Cell-size control. Cold Spring Harb. Perspect. Biol. 8, a019083.
3 Bang, M., Ryu, O., Kim, D. G., Mabunga, D. F., Cho, K. S., Kim, Y., Han, S. H., Kwon, K. J. and Shin, C. Y. (2018) Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes. Biomol. Ther. (Seoul) 27, 283-289.   DOI
4 Bhat, R., Crowe, E. P., Bitto, A., Moh, M., Katsetos, C. D., Garcia, F. U., Johnson, F. B., Trojanowski, J. Q., Sell, C. and Torres, C. (2012) Astrocyte senescence as a component of Alzheimer’s disease. PLoS ONE 7, e45069.   DOI
5 Bialas, A. R. and Stevens, B. (2013) TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16, 1773-1782.   DOI
6 Boisvert, M. M., Erikson, G. A., Shokhirev, M. N. and Allen, N. J. (2018) The aging astrocyte transcriptome from multiple regions of the mouse brain. Cell Rep. 22, 269-285.   DOI
7 Burda, J. E., Bernstein, A. M. and Sofroniew, M. V. (2016) Astrocyte roles in traumatic brain injury. Exp. Neurol. 275 Pt 3, 305-315.
8 Campbell, I. L., Abraham, C. R., Masliah, E., Kemper, P., Inglis, J. D., Oldstone, M. B. and Mucke, L. (1993) Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc. Natl. Acad. Sci. U.S.A. 90, 10061-10065.
9 Campisi, J., Andersen, J. K., Kapahi, P. and Melov, S. (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354-359.   DOI
10 Campuzano, O., Castillo-Ruiz, M. M., Acarin, L., Castellano, B. and Gonzalez, B. (2009) Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 87, 2484-2497.   DOI
11 Capell, B. C., Drake, A. M., Zhu, J., Shah, P. P., Dou, Z., Dorsey, J., Simola, D. F., Donahue, G., Sammons, M., Rai, T. S., Natale, C., Ridky, T. W., Adams, P. D. and Berger, S. L. (2016) MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 30, 321-336.   DOI
12 Chang, H. N., Pang, J. H., Chen, C. P., Ko, P. C., Lin, M. S., Tsai, W. C. and Yang, Y. M. (2012) The effect of aging on migration, proliferation, and collagen expression of tenocytes in response to ciprofloxacin. J. Orthop. Res. 30, 764-768.   DOI
13 Chung, W. S., Clarke, L. E., Wang, G. X., Stafford, B. K., Sher, A., Chakraborty, C., Joung, J., Foo, L. C., Thompson, A., Chen, C., Smith, S. J. and Barres, B. A. (2013) Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504, 394-400.   DOI
14 Chung, W. S., Welsh, C. A., Barres, B. A. and Stevens, B. (2015) Do glia drive synaptic and cognitive impairment in disease? Nat. Neurosci. 18, 1539-1545.   DOI
15 Dossi, E., Vasile, F. and Rouach, N. (2018) Human astrocytes in the diseased brain. Brain Res. Bull. 136, 139-156.   DOI
16 Clarke, L. E., Liddelow, S. A., Chakraborty, C., Munch, A. E., Heiman, M. and Barres, B. A. (2018) Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. U.S.A. 115, E1896-E1905.
17 Collins-Hooper, H., Woolley, T. E., Dyson, L., Patel, A., Potter, P., Baker, R. E., Gaffney, E. A., Maini, P. K., Dash, P. R. and Patel, K. (2012) Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration. Stem Cells 30, 1182-1195.   DOI
18 Dai, W., Zhou, J., Jin, B. and Pan, J. (2016) Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci. Rep. 6, 22622.   DOI
19 De Cecco, M., Jeyapalan, J., Zhao, X., Tamamori-Adachi, M. and Sedivy, J. M. (2011) Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany N.Y.) 3, 955-967.   DOI
20 Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M. and Campisi, J. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367.   DOI
21 Grolleau-Julius, A., Harning, E. K., Abernathy, L. M. and Yung, R. L. (2008) Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res. 68, 6341-6349.   DOI
22 Enokido, Y., Yoshitake, A., Ito, H. and Okazawa, H. (2008) Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun. 376, 128-133.   DOI
23 Fiacco, T. A., Agulhon, C. and McCarthy, K. D. (2009) Sorting out astrocyte physiology from pharmacology. Annu. Rev. Pharmacol. Toxicol. 49, 151-174.   DOI
24 Godbout, J. P. and Johnson, R. W. (2004) Interleukin-6 in the aging brain. J. Neuroimmunol. 147, 141-144.   DOI
25 Hudgins, A. D., Tazearslan, C., Tare, A., Zhu, Y., Huffman, D. and Suh, Y. (2018) Age- and tissue-specific expression of senescence biomarkers in mice. Front. Genet. 9, 59.   DOI
26 Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.   DOI
27 Hou, J., Cui, C., Kim, S., Sung, C. and Choi, C. (2018) Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. Chem. Biol. Interact. 283, 75-83.   DOI
28 Hu, W., Huang, X. S., Wu, J. F., Yang, L., Zheng, Y. T., Shen, Y. M., Li, Z. Y. and Li, X. (2018) Discovery of novel topoisomerase II inhibitors by medicinal chemistry approaches. J. Med. Chem. 61, 8947-8980.   DOI
29 Kalman, J., Juhasz, A., Laird, G., Dickens, P., Jardanhazy, T., Rimanoczy, A., Boncz, I., Parry-Jones, W. L. and Janka, Z. (1997) Serum interleukin-6 levels correlate with the severity of dementia in Down syndrome and in Alzheimer's disease. Acta Neurol. Scand. 96, 236-240.   DOI
30 Jo, S., Yarishkin, O., Hwang, Y. J., Chun, Y. E., Park, M., Woo, D. H., Bae, J. Y., Kim, T., Lee, J., Chun, H., Park, H. J., Lee, D. Y., Hong, J., Kim, H. Y., Oh, S. J., Park, S. J., Lee, H., Yoon, B. E., Kim, Y., Jeong, Y., Shim, I., Bae, Y. C., Cho, J., Kowall, N. W., Ryu, H., Hwang, E., Kim, D. and Lee, C. J. (2014) GABA from reactive astrocytes impairs memory in mouse models of Alzheimer's disease. Nat. Med. 20, 886-896.   DOI
31 Kim, J. N., Kim, M. K., Cho, K. S., Choi, C. S., Park, S. H., Yang, S. I., Joo, S. H., Park, J. H., Bahn, G., Shin, C. Y., Lee, H. J., Han, S. H. and Kwon, K. J. (2013) Valproic acid regulates alpha-synuclein expression through JNK pathway in rat primary astrocytes. Biomol. Ther. (Seoul) 21, 222-228.   DOI
32 Kumar, M. J. and Andersen, J. K. (2004) Perspectives on MAO-B in aging and neurological disease: where do we go from here? Mol. Neurobiol. 30, 77-89.   DOI
33 Nasrin Ghassemi, B. and Shokrzadeh, M. D. (2018) Protective effect of amifostine against etoposide-induced genotoxicity evaluated by the comet assays. SOJ Pharm. Pharm. Sci. 5, 1-5.
34 Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Munch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487.   DOI
35 Mallajosyula, J. K., Chinta, S. J., Rajagopalan, S., Nicholls, D. G. and Andersen, J. K. (2009) Metabolic control analysis in a cellular model of elevated MAO-B: relevance to Parkinson's disease. Neurotox. Res. 16, 186-193.   DOI
36 McHugh, D. and Gil, J. (2018) Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65-77.   DOI
37 Meyer, P., Maity, P., Burkovski, A., Schwab, J., Mussel, C., Singh, K., Ferreira, F. F., Krug, L., Maier, H. J., Wlaschek, M., Wirth, T., Kestler, H. A. and Scharffetter-Kochanek, K. (2017) A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput. Biol. 13, e1005741.   DOI
38 Nagatsu, T. and Sawada, M. (2006) Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson's disease: possible implications of glial cells. J. Neural Transm. Suppl. (71), 53-65.
39 Ortiz-Montero, P., Londono-Vallejo, A. and Vernot, J. P. (2017) Senescence- associated IL-6 and IL-8 cytokines induce a self- and cross-reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal. 15, 17.   DOI
40 Pommier, Y., Leo, E., Zhang, H. and Marchand, C. (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421-433.   DOI
41 Qiu, Z., Sweeney, D. D., Netzeband, J. G. and Gruol, D. L. (1998) Chronic interleukin-6 alters NMDA receptor-mediated membrane responses and enhances neurotoxicity in developing CNS neurons. J. Neurosci. 18, 10445-10456.   DOI
42 Srivastava, S. (2017) The mitochondrial basis of aging and age-related disorders. Genes (Basel) 8, E398.   DOI
43 Salminen, A., Ojala, J., Kaarniranta, K., Haapasalo, A., Hiltunen, M. and Soininen, H. (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3-11.   DOI
44 Saura, J., Kettler, R., Da Prada, M. and Richards, J. G. (1992) Quantitative enzyme radioautography with 3H-Ro 41-1049 and 3H-Ro 19-6327 in vitro: localization and abundance of MAO-A and MAO-B in rat CNS, peripheral organs, and human brain. J. Neurosci. 12, 1977-1999.   DOI
45 Saura, J., Luque, J. M., Cesura, A. M., Da Prada, M., Chan-Palay, V., Huber, G., Loffler, J. and Richards, J. G. (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62, 15-30.   DOI
46 te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. and Joel, S. P. (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876-1883.
47 Vallieres, L., Campbell, I. L., Gage, F. H. and Sawchenko, P. E. (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J. Neurosci. 22, 486-492.   DOI
48 Yoon, K. B., Park, K. R., Kim, S. Y. and Han, S. Y. (2016) Induction of nuclear enlargement and senescence by sirtuin inhibitors in glioblastoma cells. Immune Netw. 16, 183-188.   DOI
49 Voloboueva, L. A., Suh, S. W., Swanson, R. A. and Giffard, R. G. (2007) Inhibition of mitochondrial function in astrocytes: implications for neuroprotection. J. Neurochem. 102, 1383-1394.   DOI
50 Woodroofe, M. N., Sarna, G. S., Wadhwa, M., Hayes, G. M., Loughlin, A. J., Tinker, A. and Cuzner, M. L. (1991) Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J. Neuroimmunol. 33, 227-236.   DOI