Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0036

Transcriptional Heterogeneity of Cellular Senescence in Cancer  

Junaid, Muhammad (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine)
Lee, Aejin (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine)
Kim, Jaehyung (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine)
Park, Tae Jun (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine)
Lim, Su Bin (Department of Biochemistry and Molecular Biology, Ajou University School of Medicine)
Abstract
Cellular senescence plays a paradoxical role in tumorigenesis through the expression of diverse senescence-associated (SA) secretory phenotypes (SASPs). The heterogeneity of SA gene expression in cancer cells not only promotes cancer stemness but also protects these cells from chemotherapy. Despite the potential correlation between cancer and SA biomarkers, many transcriptional changes across distinct cell populations remain largely unknown. During the past decade, single-cell RNA sequencing (scRNA-seq) technologies have emerged as powerful experimental and analytical tools to dissect such diverse senescence-derived transcriptional changes. Here, we review the recent sequencing efforts that successfully characterized scRNA-seq data obtained from diverse cancer cells and elucidated the role of senescent cells in tumor malignancy. We further highlight the functional implications of SA genes expressed specifically in cancer and stromal cell populations in the tumor microenvironment. Translational research leveraging scRNA-seq profiling of SA genes will facilitate the identification of novel expression patterns underlying cancer susceptibility, providing new therapeutic opportunities in the era of precision medicine.
Keywords
cancer; cellular heterogeneity; senescence; single-cell RNA sequencing;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Xiao, Z., Dai, Z., and Locasale, J.W. (2019). Metabolic landscape of the tumor microenvironment at single cell resolution. Nat. Commun. 10, 3763.
2 Zappia, L. and Theis, F.J. (2021). Over 1000 tools reveal trends in the single-cell RNA-seq analysis landscape. Genome Biol. 22, 301.
3 Zhang, Y., Ma, Y., Huang, Y., Zhang, Y., Jiang, Q., Zhou, M., and Su, J. (2020). Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data. Comput. Struct. Biotechnol. J. 18, 2953-2961.   DOI
4 Ziegenhain, C., Vieth, B., Parekh, S., Reinius, B., Guillaumet-Adkins, A., Smets, M., Leonhardt, H., Heyn, H., Hellmann, I., and Enard, W. (2017). Comparative analysis of single-cell RNA sequencing methods. Mol. Cell 65, 631-643.e4.   DOI
5 Marjanovic, N.D., Hofree, M., Chan, J.E., Canner, D., Wu, K., Trakala, M., Hartmann, G.G., Smith, O.C., Kim, J.Y., Evans, K.V., et al. (2020). Emergence of a high-plasticity cell state during lung cancer evolution. Cancer Cell 38, 229-246.e13.   DOI
6 Mellone, M., Hanley, C.J., Thirdborough, S., Mellows, T., Garcia, E., Woo, J., Tod, J., Frampton, S., Jenei, V., Moutasim, K.A., et al. (2016). Induction of fibroblast senescence generates a non-fibrogenic myofibroblast phenotype that differentially impacts on cancer prognosis. Aging (Albany N.Y.) 9, 114-132.
7 Mereu, E., Lafzi, A., Moutinho, C., Ziegenhain, C., McCarthy, D.J., Alvarez- Varela, A., Batlle, E., Sagar, Grun, D., Lau, J.K., et al. (2020). Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747-755.   DOI
8 Muhl, L., Genove, G., Leptidis, S., Liu, J., He, L., Mocci, G., Sun, Y., Gustafsson, S., Buyandelger, B., Chivukula, I.V., et al. (2020). Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. Nat. Commun. 11, 3953.
9 Casella, G., Munk, R., Kim, K.M., Piao, Y., De, S., Abdelmohsen, K., and Gorospe, M. (2019). Transcriptome signature of cellular senescence. Nucleic Acids Res. 47, 7294-7305.   DOI
10 Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522.   DOI
11 van Deursen, J.M. (2014). The role of senescent cells in ageing. Nature 509, 439-446.   DOI
12 Wang, Y., Liu, Y., Zhu, C., Zhang, X., and Li, G. (2022). Development of an aging-related gene signature for predicting prognosis, immunotherapy, and chemotherapy benefits in rectal cancer. Front. Mol. Biosci. 8, 775700.
13 Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217.   DOI
14 Nicos, M., Krawczyk, P., Crosetto, N., and Milanowski, J. (2020). The role of intratumor heterogeneity in the response of metastatic non-small cell lung cancer to immune checkpoint inhibitors. Front. Oncol. 10, 569202.
15 Ortiz-Montero, P., Londono-Vallejo, A., and Vernot, J.P. (2017). Senescence-associated IL-6 and IL-8 cytokines induce a self- and cross- reinforced senescence/inflammatory milieu strengthening tumorigenic capabilities in the MCF-7 breast cancer cell line. Cell Commun. Signal. 15, 17.
16 Kim, S. and Kim, C. (2021). Transcriptomic analysis of cellular senescence: one step closer to senescence atlas. Mol. Cells 44, 136-145.   DOI
17 Wiley, C.D., Flynn, J.M., Morrissey, C., Lebofsky, R., Shuga, J., Dong, X., Unger, M.A., Vijg, J., Melov, S., and Campisi, J. (2017). Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell 16, 1043-1050.   DOI
18 Wyld, L., Bellantuono, I., Tchkonia, T., Morgan, J., Turner, O., Foss, F., George, J., Danson, S., and Kirkland, J.L. (2020). Senescence and cancer: a review of clinical implications of senescence and senotherapies. Cancers (Basel) 12, 2134.
19 Ximerakis, M., Lipnick, S.L., Innes, B.T., Simmons, S.K., Adiconis, X., Dionne, D., Mayweather, B.A., Nguyen, L., Niziolek, Z., Ozek, C., et al. (2019). Single- cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696-1708.   DOI
20 Yang, F., Tuxhorn, J.A., Ressler, S.J., McAlhany, S.J., Dang, T.D., and Rowley, D.R. (2005). Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res. 65, 8887-8895.   DOI
21 Demaria, M., O'Leary, M.N., Chang, J., Shao, L., Liu, S., Alimirah, F., Koenig, K., Le, C., Mitin, N., Deal, A.M., et al. (2017). Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165-176.   DOI
22 Chen, P., Wang, Y., Li, J., Bo, X., Wang, J., Nan, L., Wang, C., Ba, Q., Liu, H., and Wang, H. (2021). Diversity and intratumoral heterogeneity in human gallbladder cancer progression revealed by single-cell RNA sequencing. Clin. Transl. Med. 11, e462.
23 Coppe, J.P., Kauser, K., Campisi, J., and Beausejour, C.M. (2006). Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J. Biol. Chem. 281, 29568-29574.   DOI
24 Davalos, A.R., Coppe, J.P., Campisi, J., and Desprez, P.Y. (2010). Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 29, 273-283.   DOI
25 Zhou, Y., Liu, S., Liu, C., Yang, J., Lin, Q., Zheng, S., Chen, C., Zhou, Q., and Chen, R. (2021). Single-cell RNA sequencing reveals spatiotemporal heterogeneity and malignant progression in pancreatic neuroendocrine tumor. Int. J. Biol. Sci. 17, 3760-3775.   DOI
26 Luecken, M.D., Buttner, M., Chaichoompu, K., Danese, A., Interlandi, M., Mueller, M.F., Strobl, D.C., Zappia, L., Dugas, M., Colome-Tatche, M., et al. (2022). Benchmarking atlas-level data integration in single-cell genomics. Nat. Methods 19, 41-50.   DOI
27 Massalha, H., Bahar Halpern, K., Abu-Gazala, S., Jana, T., Massasa, E.E., Moor, A.E., Buchauer, L., Rozenberg, M., Pikarsky, E., Amit, I., et al. (2020). A single cell atlas of the human liver tumor microenvironment. Mol. Syst. Biol. 16, e9682.
28 Milanovic, M., Fan, D.N.Y., Belenki, D., Dabritz, J.H.M., Zhao, Z., Yu, Y., Dorr, J.R., Dimitrova, L., Lenze, D., Monteiro Barbosa, I.A., et al. (2018). Senescence-associated reprogramming promotes cancer stemness. Nature 553, 96-100.   DOI
29 Zhai, W.Y., Duan, F.F., Chen, S., Wang, J.Y., Zhao, Z.R., Wang, Y.Z., Rao, B.Y., Lin, Y.B., and Long, H. (2022). An aging-related gene signature-based model for risk stratification and prognosis prediction in lung squamous carcinoma. Front. Cell Dev. Biol. 10, 770550.
30 Uyar, B., Palmer, D., Kowald, A., Murua Escobar, H., Barrantes, I., Moller, S., Akalin, A., and Fuellen, G. (2020). Single-cell analyses of aging, inflammation and senescence. Ageing Res. Rev. 64, 101156.
31 Zhang, P., Yang, M., Zhang, Y., Xiao, S., Lai, X., Tan, A., Du, S., and Li, S. (2019). Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep. 27, 1934-1947.e5.   DOI
32 Ozcan, S., Alessio, N., Acar, M.B., Mert, E., Omerli, F., Peluso, G., and Galderisi, U. (2016). Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging (Albany N.Y.) 8, 1316-1329.
33 Ewald, J.A., Desotelle, J.A., Wilding, G., and Jarrard, D.F. (2010). Therapy- induced senescence in cancer. J. Natl. Cancer Inst. 102, 1536-1546.   DOI
34 Faget, D.V., Ren, Q., and Stewart, S.A. (2019). Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439-453.   DOI
35 Egeblad, M. and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174.   DOI
36 Zhang, Y., Yan, Y., Ning, N., Shen, Z., and Ye, Y. (2021). A signature of 24 agingrelated gene pairs predict overall survival in gastric cancer. Biomed. Eng. Online 20, 35.
37 Ou, H.L., Hoffmann, R., Gonzalez-Lopez, C., Doherty, G.J., Korkola, J.E., and Munoz-Espin, D. (2021). Cellular senescence in cancer: from mechanisms to detection. Mol. Oncol. 15, 2634-2671.   DOI
38 Panda, A.C., Abdelmohsen, K., and Gorospe, M. (2017). SASP regulation by noncoding RNA. Mech. Ageing Dev. 168, 37-43.   DOI
39 Park, S.S., Choi, Y.W., Kim, J.H., Kim, H.S., and Park, T.J. (2021). Senescent tumor cells: an overlooked adversary in the battle against cancer. Exp. Mol. Med. 53, 1834-1841.   DOI
40 Schaum, N., Lehallier, B., Hahn, O., Palovics, R., Hosseinzadeh, S., Lee, S.E., Sit, R., Lee, D.P., Losada, P.M., Zardeneta, M.E., et al. (2020). Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596-602.   DOI
41 Schosserer, M., Grillari, J., and Breitenbach, M. (2017). The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front. Oncol. 7, 278.
42 Sikora, E., Bielak-Zmijewska, A., and Mosieniak, G. (2021). A common signature of cellular senescence; does it exist? Ageing Res. Rev. 71, 101458.
43 Sole-Boldo, L., Raddatz, G., Schutz, S., Mallm, J.P., Rippe, K., Lonsdorf, A.S., Rodriguez-Paredes, M., and Lyko, F. (2020). Single-cell transcriptomes of the human skin reveal age-related loss of fibroblast priming. Commun. Biol. 3, 188.
44 Kirkland, J.L. and Tchkonia, T. (2017). Cellular senescence: a translational perspective. EBioMedicine 21, 21-28.   DOI
45 Acosta, J.C., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J.P., Athineos, D., Kang, T.W., Lasitschka, F., Andrulis, M., et al. (2013). A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978-990.   DOI
46 Basisty, N., Kale, A., Jeon, O.H., Kuehnemann, C., Payne, T., Rao, C., Holtz, A., Shah, S., Sharma, V., Ferrucci, L., et al. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 18, e3000599.
47 Kang, T.W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., et al. (2011). Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547-551.   DOI
48 Kieffer, Y., Hocine, H.R., Gentric, G., Pelon, F., Bernard, C., Bourachot, B., Lameiras, S., Albergante, L., Bonneau, C., Guyard, A., et al. (2020). Single- cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330-1351.   DOI
49 Kim, Y.H. and Park, T.J. (2019). Cellular senescence in cancer. BMB Rep. 52, 42-46.   DOI
50 Kinker, G.S., Greenwald, A.C., Tal, R., Orlova, Z., Cuoco, M.S., McFarland, J.M., Warren, A., Rodman, C., Roth, J.A., Bender, S.A., et al. (2020). Pan- cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat. Genet. 52, 1208-1218.   DOI
51 Freund, A., Orjalo, A.V., Desprez, P.Y., and Campisi, J. (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol. Med. 16, 238-246.   DOI
52 Storz, P. and Crawford, H.C. (2020). Carcinogenesis of pancreatic ductal adenocarcinoma. Gastroenterology 158, 2072-2081.   DOI
53 Sturmlechner, I., Zhang, C., Sine, C.C., van Deursen, E.J., Jeganathan, K.B., Hamada, N., Grasic, J., Friedman, D., Stutchman, J.T., Can, I., et al. (2021). p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science 374, eabb3420.
54 Ferrucci, L. and Fabbri, E. (2018). Inflammageing: chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 15, 505-522.   DOI
55 Peng, J., Sun, B.F., Chen, C.Y., Zhou, J.Y., Chen, Y.S., Chen, H., Liu, L., Huang, D., Jiang, J., Cui, G.S., et al. (2019). Single-cell RNA-seq highlights intra- tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res. 29, 725-738.   DOI
56 Perez-Mancera, P.A., Young, A.R., and Narita, M. (2014). Inside and out: the activities of senescence in cancer. Nat. Rev. Cancer 14, 547-558.   DOI
57 Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M., and Ohtsuki, M. (2016). Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17, 868.
58 Prasanna, P.G., Citrin, D.E., Hildesheim, J., Ahmed, M.M., Venkatachalam, S., Riscuta, G., Xi, D., Zheng, G., Deursen, J.V., Goronzy, J., et al. (2021). Therapy-induced senescence: opportunities to improve anticancer therapy. J. Natl. Cancer Inst. 113, 1285-1298.   DOI
59 Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B.B., Siddiqui, A., et al. (2009). mRNA-Seq whole- transcriptome analysis of a single cell. Nat. Methods 6, 377-382.   DOI
60 Kirschner, K., Rattanavirotkul, N., Quince, M.F., and Chandra, T. (2020). Functional heterogeneity in senescence. Biochem. Soc. Trans. 48, 765-773.   DOI
61 Kiss, T., Nyul-Toth, A., Balasubramanian, P., Tarantini, S., Ahire, C., DelFavero, J., Yabluchanskiy, A., Csipo, T., Farkas, E., Wiley, G., et al. (2020). Single-cell RNA sequencing identifies senescent cerebromicrovascular endothelial cells in the aged mouse brain. Geroscience 42, 429-444.   DOI
62 Kumar, V., Ramnarayanan, K., Sundar, R., Padmanabhan, N., Srivastava, S., Koiwa, M., Yasuda, T., Koh, V., Huang, K.K., Tay, S.T., et al. (2022). Single- cell atlas of lineage states, tumor microenvironment, and subtype-specific expression programs in gastric cancer. Cancer Discov. 12, 670-691.   DOI
63 Kumari, R. and Jat, P. (2021). Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front. Cell Dev. Biol. 9, 645593.
64 Laberge, R.M., Awad, P., Campisi, J., and Desprez, P.Y. (2012). Epithelial- mesenchymal transition induced by senescent fibroblasts. Cancer Microenviron. 5, 39-44.   DOI
65 Lecot, P., Alimirah, F., Desprez, P.Y., Campisi, J., and Wiley, C. (2016). Context-dependent effects of cellular senescence in cancer development. Br. J. Cancer 114, 1180-1184.   DOI
66 Lee, S. and Schmitt, C.A. (2019). The dynamic nature of senescence in cancer. Nat. Cell Biol. 21, 94-101.   DOI
67 Lei, Y., Tang, R., Xu, J., Wang, W., Zhang, B., Liu, J., Yu, X., and Shi, S. (2021). Applications of single-cell sequencing in cancer research: progress and perspectives. J. Hematol. Oncol. 14, 91.
68 Lian, J., Yue, Y., Yu, W., and Zhang, Y. (2020). Immunosenescence: a key player in cancer development. J. Hematol. Oncol. 13, 151.
69 Fukushima, Y., Minato, N., and Hattori, M. (2018). The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflamm. Regen. 38, 24.
70 Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209-249.   DOI
71 Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D.W., Fasano, A., Miller, G.W., et al. (2019). Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822-1832.   DOI
72 Lim, S.B., Yeo, T., Lee, W.D., Bhagat, A.A.S., Tan, S.J., Tan, D.S.W., Lim, W.T., and Lim, C.T. (2019c). Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc. Natl. Acad. Sci. U. S. A. 116, 17957-17962.   DOI
73 Aramillo Irizar, P., Schauble, S., Esser, D., Groth, M., Frahm, C., Priebe, S., Baumgart, M., Hartmann, N., Marthandan, S., Menzel, U., et al. (2018). Transcriptomic alterations during ageing reflect the shift from cancer to degenerative diseases in the elderly. Nat. Commun. 9, 327.
74 Azizi, E., Carr, A.J., Plitas, G., Cornish, A.E., Konopacki, C., Prabhakaran, S., Nainys, J., Wu, K., Kiseliovas, V., Setty, M., et al. (2018). Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293-1308.e36.   DOI
75 Lim, S.B., Di Lee, W., Vasudevan, J., Lim, W.T., and Lim, C.T. (2019a). Liquid biopsy: one cell at a time. NPJ Precis. Oncol. 3, 23.
76 Lim, S.B., Lim, C.T., and Lim, W.T. (2019b). Single-cell analysis of circulating tumor cells: why heterogeneity matters. Cancers (Basel) 11, 1595.
77 Liu, Y. and Cao, X. (2016). Characteristics and significance of the pre- metastatic niche. Cancer Cell 30, 668-681.   DOI
78 Herranz, N. and Gil, J. (2018). Mechanisms and functions of cellular senescence. J. Clin. Invest. 128, 1238-1246.   DOI
79 Hickson, L.J., Langhi Prata, L.G.P., Bobart, S.A., Evans, T.K., Giorgadze, N., Hashmi, S.K., Herrmann, S.M., Jensen, M.D., Jia, Q., Jordan, K.L., et al. (2019). Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 47, 446-456.   DOI
80 Hwang, H.J., Lee, Y.R., Kang, D., Lee, H.C., Seo, H.R., Ryu, J.K., Kim, Y.N., Ko, Y.G., Park, H.J., and Lee, J.S. (2020). Endothelial cells under therapy- induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett. 490, 100-110.   DOI
81 Cuollo, L., Antonangeli, F., Santoni, A., and Soriani, A. (2020). The senescence-associated secretory phenotype (SASP) in the challenging future of cancer therapy and age-related diseases. Biology (Basel) 9, 485.
82 Biavasco, R., Lettera, E., Giannetti, K., Gilioli, D., Beretta, S., Conti, A., Scala, S., Cesana, D., Gallina, P., Norelli, M., et al. (2021). Oncogene-induced senescence in hematopoietic progenitors features myeloid restricted hematopoiesis, chronic inflammation and histiocytosis. Nat. Commun. 12, 4559.
83 Bochenek, M.L., Schutz, E., and Schafer, K. (2016). Endothelial cell senescence and thrombosis: ageing clots. Thromb. Res. 147, 36-45.   DOI
84 Ben-Porath, I. and Weinberg, R.A. (2004). When cells get stressed: an integrative view of cellular senescence. J. Clin. Invest. 113, 8-13.   DOI
85 Coppe, J.P., Desprez, P.Y., Krtolica, A., and Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99-118.   DOI
86 Coppe, J.P., Patil, C.K., Rodier, F., Sun, Y., Munoz, D.P., Goldstein, J., Nelson, P.S., Desprez, P.Y., and Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853-2868.
87 Davis-Marcisak, E.F., Deshpande, A., Stein-O'Brien, G.L., Ho, W.J., Laheru, D., Jaffee, E.M., Fertig, E.J., and Kagohara, L.T. (2021). From bench to bedside: single-cell analysis for cancer immunotherapy. Cancer Cell 39, 1062-1080.   DOI
88 Dong, Y., Wang, Z., and Shi, Q. (2020). Liquid biopsy based single-cell transcriptome profiling characterizes heterogeneity of disseminated tumor cells from lung adenocarcinoma. Proteomics 20, e1900224.
89 Debatin, K.M. (2004). Apoptosis pathways in cancer and cancer therapy. Cancer Immunol. Immunother. 53, 153-159.   DOI
90 Dimri, G.P. (2005). What has senescence got to do with cancer? Cancer Cell 7, 505-512.   DOI
91 Grainger, S., Traver, D., and Willert, K. (2018). Wnt signaling in hematological malignancies. Prog. Mol. Biol. Transl. Sci. 153, 321-341.   DOI
92 Tsai, K.K., Chuang, E.Y., Little, J.B., and Yuan, Z.M. (2005). Cellular mechanisms for low-dose ionizing radiation-induced perturbation of the breast tissue microenvironment. Cancer Res. 65, 6734-6744.   DOI
93 Gao, Y., Li, L., Amos, C.I., and Li, W. (2021). Analysis of alternative polyadenylation from single-cell RNA-seq using scDaPars reveals cell subpopulations invisible to gene expression. Genome Res. 31, 1856-1866.   DOI
94 Gorgoulis, V., Adams, P.D., Alimonti, A., Bennett, D.C., Bischof, O., Bishop, C., Campisi, J., Collado, M., Evangelou, K., Ferbeyre, G., et al. (2019). Cellular senescence: defining a path forward. Cell 179, 813-827.   DOI
95 Hanahan, D. and Weinberg, R.A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646-674.   DOI
96 Hansel, C., Jendrossek, V., and Klein, D. (2020). Cellular senescence in the lung: the central role of senescent epithelial cells. Int. J. Mol. Sci. 21, 3279.
97 Hassona, Y., Cirillo, N., Heesom, K., Parkinson, E.K., and Prime, S.S. (2014). Senescent cancer-associated fibroblasts secrete active MMP-2 that promotes keratinocyte dis-cohesion and invasion. Br. J. Cancer 111, 1230-1237.   DOI
98 Birch, J. and Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes Dev. 34, 1565-1576.   DOI
99 Borghesan, M., Fafian-Labora, J., Eleftheriadou, O., Carpintero-Fernandez, P., Paez-Ribes, M., Vizcay-Barrena, G., Swisa, A., Kolodkin-Gal, D., Ximenez- Embun, P., Lowe, R., et al. (2019). Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep. 27, 3956-3971.e6.   DOI
100 Bray, F., Laversanne, M., Weiderpass, E., and Soerjomataram, I. (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127, 3029-3030.   DOI
101 Prasetyanti, P.R. and Medema, J.P. (2017). Intra-tumor heterogeneity from a cancer stem cell perspective. Mol. Cancer 16, 41.
102 Hernandez-Segura, A., de Jong, T.V., Melov, S., Guryev, V., Campisi, J., and Demaria, M. (2017). Unmasking transcriptional heterogeneity in senescent cells. Curr. Biol. 27, 2652-2660.e4.   DOI
103 Jochems, F., Thijssen, B., De Conti, G., Jansen, R., Pogacar, Z., Groot, K., Wang, L., Schepers, A., Wang, C., Jin, H., et al. (2021). The Cancer SENESCopedia: a delineation of cancer cell senescence. Cell Rep. 36, 109441.
104 Heuberger, D.M. and Schuepbach, R.A. (2019). Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb. J. 17, 4.
105 Prieto, L.I. and Baker, D.J. (2019). Cellular senescence and the immune system in cancer. Gerontology 65, 505-512.   DOI
106 Qian, J., Olbrecht, S., Boeckx, B., Vos, H., Laoui, D., Etlioglu, E., Wauters, E., Pomella, V., Verbandt, S., Busschaert, P., et al. (2020). A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 30, 745-762.   DOI
107 Qian, M., Wang, D.C., Chen, H., and Cheng, Y. (2017). Detection of single cell heterogeneity in cancer. Semin. Cell Dev. Biol. 64, 143-149.   DOI
108 Reyfman, P.A., Walter, J.M., Joshi, N., Anekalla, K.R., McQuattie-Pimentel, A.C., Chiu, S., Fernandez, R., Akbarpour, M., Chen, C.I., Ren, Z., et al. (2019). Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517-1536.   DOI
109 Campisi, J. and d'Adda di Fagagna, F. (2007). Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729-740.   DOI
110 Campisi, J. (2011). Cellular senescence: putting the paradoxes in perspective. Curr. Opin. Genet. Dev. 21, 107-112.   DOI
111 Chambers, C.R., Ritchie, S., Pereira, B.A., and Timpson, P. (2021). Overcoming the senescence-associated secretory phenotype (SASP): a complex mechanism of resistance in the treatment of cancer. Mol. Oncol.15, 3242-3255.   DOI
112 Chatsirisupachai, K., Lesluyes, T., Paraoan, L., Van Loo, P., and de Magalhaes, J.P. (2021). An integrative analysis of the age-associated multi- omic landscape across cancers. Nat. Commun. 12, 2345.
113 Choi, Y.W., Kim, Y.H., Oh, S.Y., Suh, K.W., Kim, Y.S., Lee, G.Y., Yoon, J.E., Park, S.S., Lee, Y.K., Park, Y.J., et al. (2021). Senescent tumor cells build a cytokine shield in colorectal cancer. Adv. Sci. (Weinh.) 8, 2002497.
114 Tabula Muris Consortium (2020). A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590-595.   DOI
115 Ungvari, Z., Valcarcel-Ares, M.N., Tarantini, S., Yabluchanskiy, A., Fulop, G.A., Kiss, T., and Csiszar, A. (2017). Connective tissue growth factor (CTGF) in age-related vascular pathologies. Geroscience 39, 491-498.   DOI
116 Ribas, A. and Wolchok, J.D. (2018). Cancer immunotherapy using checkpoint blockade. Science 359, 1350-1355.   DOI
117 Ruscetti, M., Morris, J.P., 4th, Mezzadra, R., Russell, J., Leibold, J., Romesser, P.B., Simon, J., Kulick, A., Ho, Y.J., Fennell, M., et al. (2020). Senescence- induced vascular remodeling creates therapeutic vulnerabilities in pancreas cancer. Cell 181, 424-441.e21.   DOI
118 Saleh, T., Bloukh, S., Carpenter, V.J., Alwohoush, E., Bakeer, J., Darwish, S., Azab, B., and Gewirtz, D.A. (2020). Therapy-induced senescence: an "old" friend becomes the enemy. Cancers (Basel) 12, 822.
119 Saul, D. and Kosinsky, R.L. (2021). Single-cell transcriptomics reveals the expression of aging- and senescence-associated genes in distinct cancer cell populations. Cells 10, 3126.