• Title/Summary/Keyword: cell permeability

Search Result 607, Processing Time 0.026 seconds

Hexavalent Chromium Reduction by Bacteria from Tannery Effluent

  • Batool, Rida;Yrjala, Kim;Hasnain, Shahida
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.547-554
    • /
    • 2012
  • Chromium is generated from several industrial processes. It occurs in different oxidation states, but Cr(III) and Cr(VI) are the most common ones. Cr(VI) is a toxic, soluble environmental contaminant. Some bacteria are able to reduce hexavalent chromium to the insoluble and less toxic Cr(III), and thus chromate bioremediation is of considerable interest. An indigenous chromium-reducing bacterial strain, Rb-2, isolated from a tannery water sample, was identified as Ochrobactrum intermedium, on the basis of 16S rRNA gene sequencing. The influence of factors like temperature of incubation, initial concentration of Cr, mobility of bacteria, and different carbon sources were studied to test the ability of the bacterium to reduce Cr(VI) under variable environmental conditions. The ability of the bacterial strain to reduce hexavalent chromium in artificial and industrial sewage water was evaluated. It was observed that the mechanism of resistance to metal was not due to the change in the permeability barrier of the cell membrane, and the enzyme activity was found to be inductive. Intracellular reduction of Cr(VI) was proven by reductase assay using cell-free extract. Scanning electron microscopy revealed chromium precipitates on bacterial cell surfaces, and transmission electron microscopy showed the outer as well as inner distribution of Cr(VI). This bacterial strain can be useful for Cr(VI) detoxification under a wide range of environmental conditions.

Study on Performance and Durability of the Proton Exchange Membrane Fuel Cell with Different Micro Porous Layer Penetration Thickness (미세다공층의 침투깊이가 다른 기체확산층이 고분자전해질 연료전지의 성능과 내구성에 미치는 영향에 관한 연구)

  • Cho, Junhyun;Park, Jaeman;Oh, Hwanyeong;Min, Kyoungdoug;Jyoung, Jy-Young;Lee, Eunsook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.2-81.2
    • /
    • 2011
  • The gas diffusion layer (GDL) consists of two main parts, the GDL backing layer, called as a substrate and the micro porous layer (MPL) coated on the GDBL. In this process, carbon particles of MPL penetrates to the GDBL consequently forms MPL penetration part. In this study, the micro porous layer (MPL) penetration thickness is determined as a design parameter of the GDL which affect pore size distribution profile through the GDL inducing different mass transfer characteristics. The pore size distribution and water permeability characteristics of the GDL are investigated and the cell performance is evaluated under fully/low humidification conditions. Transient response and voltage instability are also studied. In addition, to determine the effects of MPL penetration on the degradation, the carbon corrosion stress test is conducted. The GDL that have deep MPL penetration thickness shows better performance in high current density region because of enhanced water management, however, loss of penetrated MPL parts is shown after aging and it induces worse water management characteristics.

  • PDF

Effect of the Molecular Weight of Poly(vinyl alcohol) Blended with Sulfonated Polysulfone Membranes for Fuel Cell Applications

  • Chang, Sung-Hyuk;Chung, Sung-Il;Rhim, Ji-Won
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.18-24
    • /
    • 2003
  • In order to improve the mechanical properties of the sulfonated polysulfone (SPSf) membranes previously synthesized in our laboratory, poly(vinyl alcohol) (PVA) was blended which is well known as the excellent physical and chemical properties. The resulting membranes blended with several molecular weight of PVA varying from 13,000 to 124,000 have been characterized to investigate the effect of PVA molecular weight in terms of ion conductivities, methanol permeabilities, water contents and ion exchange capacities for both heat treated and untreated membranes at 150$^{\circ}C$. The proton conductivity is decreased as the molecular weight of PVA increases. The plain SPSf-6.0 showed the proton conductivity of 0.078 S/cm whereas the blended membrane with M.W. 31,000 PVA indicated 0.04 S/cm. For methanol permeabilities, when PVA is added to SPAf-6.0, methanol crossover is increased because of the gain of the hydrophilicity from 3.4 to 6.5${\times}$10$\^$-6/ $\textrm{cm}^2$/s. For the annealed blended membranes (with M.W. 31,000 PVA), both the methanol corssover and proton conductivity showed very consistent values, about 2.3${\times}$10$\^$-6/ $\textrm{cm}^2$/s and 0.036 S/cm, respectively.

Preparation and Properties of Chitosan/Montmorillonite Supported Phosphotungstic Acid Composite Membrane for Direct Methanol Fuel Cell Application

  • Purwanto, Mochammad;Widiastuti, Nurul;Gunawan, Adrian
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.375-381
    • /
    • 2021
  • Chitosan powder is synthesized by a deasetylation process of chitin, obtained from processing of dried shrimp shell powder. Subsequently, chitosan (CS) membranes filled by montmorillonite (MMT) particles and phosphotungstic acid are prepared, and characterized by FT-IR and SEM. The morphology, obtained by SEM for the composite membrane, showed that MMT filler is successfully incorporated and relatively well dispersed in the chitosan polymer matrix. Water and methanol uptake for the CS/MMT composite membranes decrease with increasing MMT loadings, but IEC value increases. In all prepared CS/MMT composite membranes, the CS membrane filled by 5 wt% MMT particles exhibits the best proton conductivity, while that with 10 wt% MMT loading exhibits the lowest methanol permeability; these values are 2.67 mS·cm-1 and 3.40 × 10-7 cm2·s-1, respectively. The best membrane selectivity is shown in the CS/MMT10 composite membrane; this shows that 10 wt% filled MMT is the optimum loading to improve the performance of the chitosan composite membrane. These characteristics make the developed chitosan composite membranes a promising electrolyte for direct methanol fuel cell (DMFC) application.

Effect of Excipients on the Stability and Transport of Recombinant Human Epidermal Growth Factor (rhEGF) across Caco-2 Cell Monolayers

  • Kim, In-Wha;Yoo, Ho-Jung;Song, Im-Sook;Chung, Youn-Bok;Moon, Dong-Cheul;Chung, Suk-Jae;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.330-337
    • /
    • 2003
  • The effect of sixteen excipients on the transport of recombinant human epidermal growth factor (rhEGF) across Caco-2 cell monolayers was examined at $37^{\circ}C$. The apparent apical to basolateral (A-B) permeability ($P_{app}$) of 30 $\mu$ M rhEGF was $8.15\times 10^{-7}$ cm/sec, indicative of a poor level of absorption in the GI tract. The Papp was 1.7- and 6.3-fold greater than the $P_{app}$ in the basolateral to apical (B-A) direction and the A-B permeability of mannitol, respectively, and decreased dramatically to a negligible level at $4^{\circ}C$, consistent with a receptor mediated transcytosis of rhEGF. The stability of rhEGF was very poor, undergoing more than 85% degradation in 2 h in the transport medium at $37^{\circ}C$. A significant increase in the $P_{app}$ could be achieved by the addition of certain excipients, as exemplified by 23, 21, 20 and 16-fold increases, in the presence of sodium taurochenodeoxycholate (NaTCDC), sodium taurodeoxycholate (NaTDC), sodium glycodeoxycholate (NaGDC) and sodium laurylsulfate (SLS) (all at a concentration of 1 % w/v), respectively. A significant increase in stability could also be achieved by the addition of some of the excipients, as represented by 1 % SLS, which nearly completely stabilized the rhEGF. Unfortunately, however, an increase in the $P_{app}$ of rhEGF could not be achieved without a simultaneous and extensive decrease in the integrity of the cell membranes. Thus, more efficient excipients, that specifically enhance the permeation of rhEGF and do not alter the membrane integrity, should be pursued in order to safely enhance the permeation of rhEGF.

High Concentration of Red Clay as an Alternative for Antibiotics in Aquaculture

  • Jung, Jaejoon;Jee, Seung Cheol;Sung, Jung-Suk;Park, Woojun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.130-138
    • /
    • 2016
  • The use of antibiotics in aquaculture raises environmental and food safety concerns because chronic exposure of an aquatic ecosystem to antibiotics can result in the spread of antibiotic resistance, bioaccumulation of antibiotics in the organisms, and transfer of antibiotics to humans. In an attempt to overcome these problems, high-concentration red clay was applied as an alternative antibiotic against the following common fish pathogens: Aeromonas salmonicida, Vibrio alginolyticus, and Streptococcus equinus. The growth of A. salmonicida and V. alginolyticus was retarded by red clay, whereas that of S. equinus was promoted. Phase contrast and scanning electron microscopy analyses confirmed the attachment of red clay on cell surfaces, resulting in rapid gravitational removal and cell surface damage in both A. salmonicida and V. alginolyticus, but not in S. equinus. Different cell wall properties of grampositive species may explain the unharmed cell surface of S. equinus. Significant levels of oxidative stress were generated in only the former two species, whereas significant changes in membrane permeability were found only in S. equinus, probably because of its physiological adaptation. The bacterial communities in water samples from Oncorhynchus mykiss aquacultures supplemented with red clay showed similar structure and diversity as those from oxytetracycline-treated water. Taken together, the antibiotic effects of high concentrations of red clay in aquaculture can be attributed to gravitational removal, cell surface damage, and oxidative stress production, and suggest that red clay may be used as an alternative for antibiotics in aquaculture.

[ $A_1$ ] Receptor-mediated Protection against Amyloid Beta-induced Injury in Human Neuroglioma Cells

  • Cho, Yong-Woon;Jung, Hyun-Ju;Kim, Yong-Keun;Woo, Jae-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • Adenosine has been reported to provide cytoprotection in the central nervous systems as well as myocardium by activating cell surface adenosine receptors. However, the exact target and mechanism of its action still remain controversial. The present study was performed to examine whether adenosine has a protective effect against $A{\beta}$-induced injury in neuroglial cells. The astrocyte-derived human neuroglioma cell line, A172 cells, and $A{\beta}_{25{\sim}35}$ were employed to produce an experimental $A{\beta}$-induced glial cell injury model. Adenosine significantly prevented $A{\beta}$-induced apoptotic cell death. Studies using various nucleotide receptor agonists and antagonists suggested that the protection was mediated by $A_1$ receptors. Adenosine attenuated $A{\beta}$-induced impairment in mitochondrial functional integrity as estimated by cellular ATP level and MTT reduction ability. In addition, adenosine prevented $A{\beta}$-induced mitochondrial permeability transition, release of cytochrome c into cytosol and subsequent activation of caspase-9. The protective effect of adenosine disappeared when cells were pretreated with 5-hydroxydecanoate, a selective blocker of the mitochondrial ATP-sensitive $K^+$ channel. In conclusion, therefore we suggest that adenosine exerts protective effect against $A{\beta}$-induced cell death of A172 cells, and that the underlying mechanism of the protection may be attributed to preservation of mitochonarial functional integrity through opening of the mitochondrial ATP-sensitive $K^+$ channels.

EXPRESSION OF PLACENTA GROWTH FACTOR IN THE ORAL SQUAMOUS CELL CARCINOMA (구강 편평세포암종에서 태반성장인자의 발현)

  • Lee, Sang-Gu;Kim, Chul-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • Angiogenesis is essential for solid tumor growth and progression. Among the pro-angiogenetic factors, vascular endothelial growth factor(VEGF), also known as vascular permeability factor, is the most important as a mitogen for vascular endothelium. The VEGF family of molecules currently consists of six growth factors, VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, and placenta growth factor(PlGF). Over-expression of PlGF is associated with angiogenesis under pathological conditions such as ischemia, inflammation, and cancer. Hence, the goal of this study is to identify the correlation of clinicopathlogical factors and the up-regulation of PlGF expression in oral squamous cell carcinoma. We studied the immunohistochemical staining of PlGF, PlGF gene expression and a real time quantitative RT-PCR in 20 specimens of 20 patients with oral squamous cell carcinoma. The results were as follows. 1. In the immunohistochemical study of poorly differentiated and invasive oral squamous cell carcinoma, the high level staining of PlGF was observed. And the correlation between immunohistopathological PlGF expression and histological differentiation of specimens was significant (Pearson correlation analysis, significance [r] >0.6, P < .05). 2. In the PlGF gene RT-PCR analysis, PlGF expression was more in tumor tissue than in adjacent normal tissue. Paired-samples analysis determined the difference of PlGF mRNA expression level between the cancer tissue and the normal tissue (Student's t - test, P < .05) These findings suggest that up-regulation of the PlGF gene may play a role in progression and local metastasis in invasive oral squamous cell carcinoma.

Prediction of Soil-water Characteristic Curve and Unsaturated Permeability Coefficient of Reclaimed Ground (불포화 준설매립 지반의 흙-수분 특성곡선 및 불포화 투수계수 예측)

  • 신은철;이학주;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.1
    • /
    • pp.109-120
    • /
    • 2004
  • There has been outstanding research on the soil-water characteristic curves of unsaturated soils over the past several decades. Unfortunately, unsaturated soil mechanics has not been considered as an important factor in Korea. In this paper, laboratory test and numerical analysis(SoilVision Professional ver 3.04) were performed to investigate the prediction method of soil-water characteristic curve and unsaturated permeability coefficient in reclaimed ground. The pressure cell, desiccator, and tensiometor tests were conducted on three types of reclaimed soils(dredged soil, sand, weathered granite soil). Numerical analysis was executed to compare the results with the laboratory test results and also compared with the results of each prediction method. Based on the laboratory test, three different types of soils have shown different soil-water characteristic curves. The hysteresis fir these soils is clearly defined. As a result of numerical analysis, Fredlund & Xing's method and Fredlund & Wilson's model proved to worke out well for reclaimed ground soils in Korea. Also, predicting method based on the soil-water characteristic curves from the particle-size distributions is flirty reliable for estimating unsaturated permeability coefficient.

Anti-oxidant Effect on Stevia rebaudiana (Stevia rebaudiana의 항산화 효과)

  • Jung, Eun Hye;Seo, Hye Lim;Kim, Min Gyu;Kim, Young Woo;Cho, Il Je
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.764-770
    • /
    • 2013
  • Stevia rebaudiana is a traditional herb used as a sweetener in Brazil and Paraguay as well as Korea and China. This study investigated the efficacy of Stevia rebaudiana methanol extract (SRE) to protect cells against the mitochondrial dysfunction and apoptosis in hepatocyte. To determine the effects of SRE on oxidative stress, we used the human derived hepatocyte cell line, HepG2 cell. Treatment of arachidonic acid (AA)+iron in HepG2 cells synergistically amplified cytotoxicity, as indicated by the excess reactive oxygen species (ROS) and mitochondrial permeability transition by fluorescence activated cell sorter (FACS) and immunoblot analysis. Treatment with SRE protected hepatocytes from AA+iron-induced cellular toxicity, as shown by alterations in the protein levels related with cell viability such as procaspase-3. SRE also prevented the mitochondrial dysfunction induced by AA+iron, and showed anti-oxidant effects as inhibition of $H_2O_2$ production and GSH depletion. Moreover, we measured the effects of SRE on AMP-activated protein kinase (AMPK), a key regulator in determining cell survival or death. Acetyl-CoA Carboxylase (ACC), a direct downstream target of AMPK. SRE increased phosphorylation of ACC, and prevented the inhibition of ACC phosphorylation by AA+iron. These results indicated that SRE has the ability to protect cells against AA+iron-induced $H_2O_2$ production and mitochondrial impairment, which may be mediated with AMPK-ACC pathway.