• Title/Summary/Keyword: cell permeability

Search Result 604, Processing Time 0.026 seconds

A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter (DPF의 PM 포집효율 예측을 위한 다양한 다공성 매질 유동장 모델 해석)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.78-88
    • /
    • 2007
  • In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.

Studies on the Methanol Permeability through PVA/SSA Ion Exchange Membranes Substituted with Various Metal Cations (금속이온으로 치환된 PVA/SSA 이온교환막의 메탄올 투과특성 연구)

  • 이충섭;정선영;전지현;신현수;임지원
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.51-53
    • /
    • 2002
  • The hydrogen ions in poly (vinyl alcohol) (PVA)/sulfosuccinic acid (SSA) membranes substiuted with $Li^+, Na^+, and K^+/ $of monvoalent metal ions, $Mg^{2+}, Ca^{2+} and Ba^{2+}$ of divalent metal ions, and $Al^{3+}$ of trivalent metal ion. In addition, $Li^+ ions were exchanged with varing reaction time. The effects of metal ions exchanged were investigated in terms of methanol permeability -uling diffusion cell. The methanol permeabilies decreased in the sequence of $Na^+, Li^+ and K^+$ and this might be due to the 'Salting-out' effect while the methanol permeabilities for divalent and trivalent ion-substituted membranes were affected by the combined effects of salting-out, eletrostatic crosslinking and extent of metal ion substiution. As for $Li^+$ ions, methanol permeabilities of PVA/SSA membranes decreased in proportion to the degrees of subsituted $Li^+$ ions.

Anti-aging potential of fish collagen hydrolysates subjected to simulated gastrointestinal digestion and Caco-2 cell permeation

  • Je, Hyun Jeong;Han, Yoo Kyung;Lee, Hyeon Gyu;Bae, In Young
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.101-107
    • /
    • 2019
  • The objectives of this study were to evaluate the anti-aging effects and investigate the effect of simulated gastrointestinal (GI) digestion on the anti-aging properties and intestinal permeation of the potential fish collagen hydrolysates (FCH). Therefore, procollagen synthesis, matrix metalloproteinase-1 (MMP-1) production, and Caco-2 cell permeability were analyzed before and after in vitro digestion for FCHs, low-molecular weight fractions (<1 kDa), and high molecular weight fractions (>1 kDa). After being subjected to GI digestion, the level of MMP-1 inhibition was maintained, although the procollagen production was significantly (>20%) lower with all samples. Also, the digested FCHs and their <1 kDa fraction yielded 9.1 and 13.8% increased peptide transport, respectively, compared to undigested samples. Based on the effective intestinal permeation and high digestive enzyme stability, the <1 kDa fraction of FCHs is a potential bioactive material suitable for anti-aging applications in the food and cosmetics industries.

Fabrication of Electrolyte for Direct Carbon Fuel Cell and Evaluation of Properties of Direct Carbon Fuel Cell (직접탄소 연료전지용 전해질 제조 및 직접탄소 연료전지 특성 평가)

  • Pi, Seuk-Hoon;Cho, Min-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.786-789
    • /
    • 2011
  • In order to estimate the possibility of applying electrolytes generally used in solid oxide fuel cells(SOFCs) to direct carbon fuel cells(DCFCs), properties of YSZ(yttria stabilized zirconia) electrolyte were evaluated. In this study, vacuum slurry coating method was adapted to coat thin layer on anode support substrate. After sintering the electrolyte at $1400^{\circ}C$ for 5hrs, microstructure was analyzed by using SEM image. Also, gas permeability and ionic conductivity were measured to find out the potential possibility of electrolyte for DCFCs. The YSZ electrolyte represented dense coating layer and low gas permeability value. The ionic conductivity of YSZ electrolyte was high over $800^{\circ}C$. After measurement of the electrolyte properties, direct carbon fuel cell was fabricated and its performance was measured at $800^{\circ}C$.

Effect of the Pore Structure on the Anodic Property of SOFC (SOFC 음극의 기공구조가 음극특성에 미치는 영향)

  • 허장원;이동석;이종호;김재동;김주선;이해원;문주호
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.1
    • /
    • pp.86-91
    • /
    • 2002
  • Solid Oxide Fuel Cells (SOFC) are of great interest of next generation energy conversion system due to their high energy efficiency and environmental friendliness. The basic SOFC unit consists of anode, cathode and solid electrolyte. Among these components, anode plays the most important role for the oxidation of fuel to generate electricity and also behaves as a substrate of the whole cell. It is normally requested that the anode materials should have the high electrical conductivity and gas permeability to reduce the polarization loss of the cell. In this study, the effect of pore former on the microstructure of anode substrate was investigated and thus on the electrical conductivity and the gas permeability. According to the results, microstructure and electrical conductivity of anode substrate were greatly influenced by the shape of pore former and especially by the anisotrpy of the pore former. The use of anisotropic pore former is supposed to deteriorate the cell performance by which the electrical conduction path is disconnected but also the effective gas diffusion path for the fuel is reduced.

Higher Expression of TRPM7 Channels in Murine Mature B Lymphocytes than Immature Cells

  • Kim, Jin-Kyoung;Ko, Jae-Hong;Nam, Joo-Hyun;Woo, Ji-Eun;Min, Kyeong-Min;Earm, Yung-E;Kim, Sung-Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.69-75
    • /
    • 2005
  • TRPM7, a cation channel protein permeable to various metal ions such as $Mg^{2+}$, is ubiquitously expressed in variety of cells including lymphocytes. The activity of TRPM7 is tightly regulated by intracellular $Mg^{2+}$, thus named $Mg^{2+}$-inhibited cation (MIC) current, and its expression is known to be critical for the viability and proliferation of B lymphocytes. In this study, the level of MIC current was compared between immature (WEHI-231) and mature (Bal-17) B lymphocytes. In both cell types, an intracellular dialysis with $Mg^{2+}$-free solution (140 mM CsCl) induced an outwardly-rectifying MIC current. The peak amplitude of MIC current and the permeability to divalent cation ($Mn^{2+}$) were several fold higher in Bal-17 than WEHI-231. Also, the level of mRNAs for TRPM7, a molecular correspondence of the MIC channel, was significantly higher in Bal-17 cells. The amplitude of MIC was further increased, and the relation between current and voltage became linear under divalent cation-free conditions, demonstrating typical properties of the TRPM7. The stimulation of B cell receptors (BCR) by ligation with antibodies did not change the amplitude of MIC current. Also, increase of extracellular $[Mg^{2+}]_c$ to enhance the $Mg^{2+}$ influx did not affect the BCR ligation-induced death of WEHI-231 cells. Although the level of TRPM7 was not directly related with the cell death of immature B cells, the remarkable difference of TRPM7 might indicate a fundamental change in the permeability to divalent cations during the development of B cells.

Characterization of SPAES Composite Membrane Containing Variously Funtionallized MMT for Direct Methanol Fuel Cell Application (다양한 관능기를 포함한 MMT/SPAES 복합막의 직접 메탄올 연료전지용 적용을 위한 특성평가)

  • Kim, Deuk-Ju;Hwang, Hae-Young;Kim, Se-Jong;Hong, Young-Taik;Kim, Hyoung-Juhn;Leem, Tae-Hoon;Nam, Sang-Yong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.42-50
    • /
    • 2011
  • The Montmorillonite (MMT) in the polymer matrix is expected to reduce methanol permeability due to the tortous path formed by dispersed silicate layers. However, the polymer composite membranes containing non-proton conducting inorganic particle tend to show low proton conductivity. To solve this problem, we used an ion exchange method to prepare functionalized MMT with various silane coupling agents. The modified MMT was randomly dispersed in sulfonated poly (arylene ether sulfone) (SPAES) matrix to prepare SPAES/modified MMT composite membranes. The performances of hybrid membranes for DMFCs application were investigated. The SPAES/modified composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane. However, the methanol permeability of the SPAES/modified membrane was higher than that of the non-modified MMT.

Studies on Skin Permeation with Polymer Micelles and the Cell Penetrating Peptide of Pyrus Serotina Var Stem Extracts

  • An, Gyu Min;Park, Su In;Kim, Min Gi;Heo, Soo Hyeon;Shin, Moon Sam
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.21-28
    • /
    • 2020
  • The stem extract from Pyrus serotina var has natural antioxidant ability, but the extraction method does not result in a soluble compound in cosmetic formulations. This study investigated the cosmetic efficacy of the Pyrus serotina var stem extract and its epidermis permeation ability when combined with polymer micelles and a cell penetrating peptide. The total concentration of polyphenol compounds was determined to be 103.1644 ± 1.38 mg/g in the ethanol extract and 78.97 ± 1.45 mg/g in the hydrothermal extract. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects were 55.94 ± 0.22% in the ethanol extract at 1,000 mg/L. Superoxide dismutase (SOD) activity rates were 104.05 ± 3.28% in the ethanol extract at 62.5 mg/L. The elastase inhibition rate was 67.21 ± 2.72% in the ethanol extract at 1,000 mg/L. An antimicrobial effect was observed in the Propionibacterium acnes strain. In the epidermal permeability experiment, it was confirmed that formulation of the polymer micelle containing the Pyrus serotina var stem extract and cell penetrating peptide (R6, hexa-D-arginine) showed small particle size and much better skin permeability. The cumulative amount of total Pyrus serotina var stem extract that penetrated to the skin over time increased over 24 hours in three formulations. The three formulations showed 51.61 ㎍/㎠ (Formulation 0), 75.97 ㎍/㎠ (Formulation 1) and 95.23 ㎍/㎠ (Formulation 2) skin penetration, respectively. Therefore, it was confirmed that the ethanol extracts of Pyrus serotina var stem showed good cosmetic efficacy and excellent epidermis permeation ability when combined with a polymer micelle and cell penetrating peptide. Thus, this extract has the potential to be used as a safe and natural cosmetic material in the future.

Research Trend of Organic/Inorganic Composite Membrane for Polymer Electrolyte Membrane Fuel Cell (고분자 전해질 연료전지용 유.무기 복합막의 연구개발동향)

  • Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.155-170
    • /
    • 2012
  • Fuel cells have been considered as alternative power generation system in the twenty-first century because of eco-friendly system, high power density and efficiency compare with petroleum engine system. Proton exchange membranes (PEMs) are the key components in fuel cell system. Currently, Nafion has been used in fuel cell system. However, Nafion has disadvantages such as low conductivity at high temperature and high cost. The researchers have focused to reach the high properties such as high proton conductivity, low permeability to fuel, good chemical/thermal stability, good mechanical properties and low manufacturing cost. Various methods have been developed for preparation of proton exchange membrane with high performance and commercialization of fuel cell system. The hybrid organic/inorganic membrane has the potentials to provide a unique combination of organic and inorganic properties with improved proton conductivity and mechanical property at high temperatures. So, this paper presents an overview of research trend for the composite membranes prepared by organic/inorganic system using various inorganic materials.

Syntheses and Characterizations of Polymer-Ceramic Composites Having Increased Hydrophilicity, Air-Permeability, and Anti-Fungal Property (친수성, 통기성 및 항균성이 향상된 고분자-세라믹 복합소재의 제조 및 물성)

  • Cho, Hyung-Joon;Jung, Dong-Woon
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.137-141
    • /
    • 2010
  • Generally, polymer materials are not air-permeable and hydrophilic. In addition, they do not possess anti-fungal property. Hydrophilicity, air-permeability, and anti-fungal properties of new composites consisting of polymer, ceramic nanoparticles, and silver ion were investigated by contact angle measurements, air permeation time, and cell culture. The hydrophilic, air-permeable, and anti-fungal composites can be used in health care industry.