Browse > Article

A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter  

Jung, Seung-Chai (Graduate School, Department of Mechanical Engineering, Yonsei University)
Yoon, Woong-Sup (Department of Mechanical Engineering, Yonsei University)
Publication Information
Transactions of the Korean Society of Automotive Engineers / v.15, no.1, 2007 , pp. 78-88 More about this Journal
Abstract
In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.
Keywords
Diesel particulate filter; DPF; Pressure drop; Filtration; Collection efficiency; Porous media flow model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Kuwabara, 'The Forces Experienced by Randomly Distributed Parallel Circular Cylinders or Spheres in a Viscous Flow at Small Reynolds Numbers,' J. Phys. Soc. Japan, Vol. 14, pp.527-532, 1959   DOI
2 G. H. Neale and W. K. Nader, 'Prediction of Transport Processes within Porous Media: Creeping Flow Relative to a Fixed Swarm of Spherical Particles,' AIChE Journal, Vol.20, No.3, pp.530-538, 1974   DOI   ScienceOn
3 R. Pfeffer, 'Heat and Mass Transport in Multiparticle Systems,' I & EC Fundamentals, Vol.3, pp.380-383, 1964   DOI
4 P. Fedkiw and J. Newman, 'Mass Transfer at High Peclet Numbers for Creeping Flow in a Packed-Bed Reactor,' AIChE Journal, Vol.23, No.3, pp.255-263, 1977   DOI   ScienceOn
5 K. J. Baumgard and D. B. Kittelson, 'The Influence of a Ceramic Particulate Trap on the Size Distribution of Diesel Particles,' SAE 850009, 1985
6 C. Gutfinger and G. I. Tardos, 'Theoretical and Experimental Investigation on Granular Bed Dust Filters,' Atmospheric Environment, Vol.13, pp.853-867, 1979   DOI
7 Y.-I. Chang, S.-C. Chen and E. Lee, 'Prediction of Brownian Particle Deposition in Porous Media Using the Constricted Tube Model,' Journal of Colloid and Interface Science, Vol.266, pp.48-59, 2003   DOI   ScienceOn
8 P. Florchinger, M. Anderson, Z. Hou, T. Taubert, E. Steinbrueck and T. Angelo, 'Prediction and Validation of Pressure Drop for Catalyzed Diesel Particulate Filters,' SAE 2003-01-0843, 2003
9 M. Venkatesan and R. Rajagopalan, 'A Hyperboloidal Constricted Tube Model of Porous Media,' AIChE Journal, Vol.26, No.4, pp.694-698, 1980   DOI
10 E. J. Bissett, 'Mathematical Model of the Thermal Regeneration of a Wall-flow Monolith Diesel Particulate Filter,' Chemical Engineering Science, Vol.39, pp.1233-1244, 1984   DOI   ScienceOn
11 J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics: with Special Applications to Particulate Media, Prentice-Hall, New Jersey, 1965
12 H. Pendse and Chi Tien, 'General Correlation of the Initial Collection Efficiency of Granular Filter Beds,' AIChE Journal Vol.28, Nol.4, pp.677-686, 1982   DOI   ScienceOn
13 J. S. MacDonald, 'The Effect of Operation Conditions on the Effluent of a Wall-Flow Monolith Particulate Trap,' SAE 831711, 1983
14 A. E. Scheidegger, The Physics of Flow through Porous Media, (3rd edition), University of Toronto Press, 1974
15 A. G. Konstandopoulos and J. H. Johnson, 'Wall-Flow Diesel Particulate Filters-Their Pressure Drop and Collection Efficiency,' SAE 890405, 1989., 2002
16 I. S. Abdul-Khalek and D. B. Kittelson, 'Diesel Trap Performance: Particle Size Measurements and Trends,' SAE 982599, 1998
17 Z. G. Liu, M. D. Skemp and J. C. Lincoln, 'Diesel Particulate Filters: Trends and Implications of Particle Size Distribution Measurement,' SAE 2003-01-0046, 2003
18 G. A. Merkel, D. M. Beall, D. L. Hickman and M. J. Vernacotola, 'Effects of Microstructure and Cell Geometry on Performance of Cordierite Diesel Particulate Filters,' SAE 2001-01- 0193, 2001
19 H.-W. Chiang and C. Tien, 'Deposition of Brownian Particles in Packed Beds,' Chemical Engineering Science, Vol.37, No.8, pp.1159- 1171, 1982   DOI   ScienceOn
20 I. S. Abdul-Khalek, D. B. Kittelson, B. R. Graskow and Q. Wei, 'Diesel Exhaust Particles Size: Measurement Issues and Trends,' SAE 980525, 1998
21 V. G. Levich, Physicochemical Hydrodynamics, Prentice-Hall, New Jersey, 1962
22 A. G. Konstandopoulos and E. Skaperdas, 'Optimized Filter Design and Selection Criteria for Continuously Regeneration Diesel Particulate Traps,' SAE 1999-01-0468, 1999
23 J. Happel, 'Viscous Flow in Multiparticle Systems: Slow Motion of Fluids Relative to Beds of Spherical Particles,' AIChE Journal, Vol.4, No.2, pp.197-201, 1958   DOI
24 A. G. Konstandopoulos, 'Flow Resistance Descriptors for Diesel Particulate Filters: Definitions, Measurements and Testing,' SAE 2003-01-0846, 2003
25 J. K. Park and I. S. Chung, 'Trends in Technology of Diesel Particulate Trap System,' Transactions of KSAE, Vol.17, No.3, pp.1-10, 1995
26 M. Venkatesan and R. Rajagopalan, 'A Hyperboloidal Constricted Tube Model of Porous Media,' AIChE Journal, Vol.26, No.4, pp.694- 698, 1980   DOI
27 G. I. Tardos and C. Gutfinger, 'Prediction of High Peclet Number Mass Transfer in Granular Beds Using The Constricted Tube Model,' AIChE Journal, Vol.25, No.6, pp.1073-1077, 1979   DOI
28 Z. G. Liu, B. M. Verdegan, K. M. A. Badeau and T. P. Sonsalla, 'Measuring the Fractional Efficiency of Diesel Particulate Filters,' SAE 2002-01-1007, 2002
29 Z. G. Liu, E. M. Thurow, R. Caldow and T. R. Johnson, 'Transient Performance of Diesel Particulate Filters as Measured by an Engine Exhaust Particle Size Spectrometer,' SAE 2005-01-0185, 2005
30 F. A. L. Dullien, Porous Media Fluid Transport and Pore Structure, 2nd edition, Academic Press, 1992
31 G. Tardos, N. Abuaf and C. Gutfinger, 'Diffusional Filtration of Dust in a Fluidized Bed,' Atmospheric Environment, Vol.10, pp.389-394, 1976   DOI