Browse > Article
http://dx.doi.org/10.7316/khnes.2011.22.1.042

Characterization of SPAES Composite Membrane Containing Variously Funtionallized MMT for Direct Methanol Fuel Cell Application  

Kim, Deuk-Ju (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
Hwang, Hae-Young (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
Kim, Se-Jong (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
Hong, Young-Taik (Energy Materials Research Center, Korea Research Institute of Chemical Technology)
Kim, Hyoung-Juhn (Fuel Cell Research Center, Korea Institute of Science and Technology)
Leem, Tae-Hoon (Fuel Cell Research Center, Korea Institute of Science and Technology)
Nam, Sang-Yong (School of Materials Science and Engineering, Engineering Research Institute, i-Cube Center, Gyeongsang National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.22, no.1, 2011 , pp. 42-50 More about this Journal
Abstract
The Montmorillonite (MMT) in the polymer matrix is expected to reduce methanol permeability due to the tortous path formed by dispersed silicate layers. However, the polymer composite membranes containing non-proton conducting inorganic particle tend to show low proton conductivity. To solve this problem, we used an ion exchange method to prepare functionalized MMT with various silane coupling agents. The modified MMT was randomly dispersed in sulfonated poly (arylene ether sulfone) (SPAES) matrix to prepare SPAES/modified MMT composite membranes. The performances of hybrid membranes for DMFCs application were investigated. The SPAES/modified composite membrane showed increased proton conductivity compared with the non-modified MMT composite membrane. However, the methanol permeability of the SPAES/modified membrane was higher than that of the non-modified MMT.
Keywords
Direct methanol fuel cell; Montmorillonite; Polymer electrolyte membrane; Ion exchange method; Silane coupling agent;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Gosalawit, S. Chirachanchai, S. Shishatskiy and S. P. Nunes, "Sulfonated montmorillonite/ sulfonated poly(ether ether ketone) (SMMT/SPEEK) nanocomposite membrane for direct methanol fuel cells (DMFCs)", J. Membr. Sci., Vol. 323, No. 2, 2008, p. 337.
2 J. R. Salgado, "Study of basic biopolymer as proton membrane for fuel cell systems", Electrochim. Acta, Vol.52, No. 11, 2007, p. 3766.   DOI   ScienceOn
3 T. Tezuka, K. Tadanaga, A. Hayashi, and M. Tatsumisago, "Inorganic−Organic Hybrid Membranes with Anhydrous Proton Conduction Prepared from 3-Aminopropyltriethoxysilane and Sulfuric Acid by the Sol−Gel Method", J. Am. Chem. Soc., Vol. 28, No. 51, 2006, p. 16470.
4 Tiezhu Fu, Zhiming Cui, Shuangling Zhong, Yuhua Shi, Chengji Zhao, Gang Zhang, Ke Shao, Hui Na and Wei Xing, "Sulfonated poly (ether ether ketone)/clay-SO3H hybrid proton exchange membranes for direct methanol fuel cells", Journal of Power Sources, Vol. 185, No. 1, 2008, p. 32.   DOI   ScienceOn
5 F. N. Cayan, M. Zhi, S. R. Pakalapati, I. Celik, N. Wu and R. Gemmen, "Effects of coal syngas impurities on anodes of solid oxide fuel cells", Journal of Power Sources, Vol. 185, No. 2, 2008, p. 32.   DOI
6 임영돈, 서동완, 이순호, M. M. Islam, 강다립, 김환기, "고분자 전해질 막 연료전지를 위한 Bisphenol-TP를 포함한 Poly(ether sulfone)s 고분자 막의 합성과 특성, 한국수소 및 신에너지 학회 논문집, Vol. 21, No. 4, 2010, p. 307.
7 T. Inoue, T. Uma and M. Nogami, "Performance of H2/O2 fuel cell using membrane electrolyte of phosphotungstic acid-modified 3-glycidoxypropyltrimethoxysilanes", J. Membr. Sci., Vol. 323, No. 1, 2008, p. 148.   DOI   ScienceOn
8 Z. Gaowen, Z. Zhentao, "Organic/inorganic composite membranes for application in DMFC", J. Membr. Sci., Vol. 261, No. 1, 2005, p. 107.   DOI
9 M. Zanetti, G. Camino, P. Reichert, and R. Miilhaupt, "Thermal Behaviour of Poly(propylene) Layered Silicate Nanocomposites", Macromol. Rapid Commun., Vol. 22, No. 3, 2001, p. 176.   DOI   ScienceOn
10 F. Lufrano, V. Baglio, P. Staiti, A.S. Arico, V. Antonucci, "Development and characterization of sulfonated polysulfone membranes for direct methanol fuel cells", Desalination, Vol. 199, No. 1, 2006, p. 283.   DOI
11 D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin and J. S. Kim, "Preparation and performance of a $Nafion^{\circledR}$/montmorillonite nanocomposite membrane for direct methanol fuel cell", Journal of Power Sources Vol. 118, No. 1, 2003, p. 205.   DOI
12 C. W. Lin, R. Thangamuthu, C. J. Yang, "Protonconducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications", J. Membr. Sci. Vol. 253, No. 1, 2005, p. 23.   DOI
13 C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, Y. M. Lee, "Sulfonated poly (arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC)", J. Membr. Sci., Vol. 303, No.1, 2007, p. 258.   DOI
14 T. Uma and M. Nogami, "Structural and Transport Properties of Mixed Phosphotungstic Acid/Phosphomolybdic Acid/$SiO_{2}$ Glass Membranes for $H_{2}/O_{2}$ Fuel Cells", Chem. Mater. Vol 19, No. 15, 2007, p. 3604.   DOI   ScienceOn
15 O. Savadogo, "Emerging membranes for electrochemical systems:(I) Solid polymer membranes for fuel cell systems", J. New. Mater. Electrochem. Syst. Vol. 1, No. 1, 1998, p. 47.
16 S. Slade, S. A. Campbell, T. R. Ralph, and F. C. Walsh, "Ionic Conductivity of an Extruded Nafion 1100 EW Series of Membranes", J. Electrochem. Soc., Vol. 149, No. 12, 2002, p. A1556.   DOI   ScienceOn
17 V.S. Silva, B. Ruffmann, S. Vetter, A. Mendes, L.M. Madeira, S.P. Nunes, "Performance and efficiency of a DMFC using non-fluorinated composite membranes operating at low/medium temperatures", Journal of Power Sources, Vol. 145, No. 2, 2005, p. 205.
18 M. J. Escudero, E. Hontanon, S. Schwartz, M. Boutonnet, and L. Daza, "Evelopment and performance characterization of new electrocatalysts for PEMFC", Journal of Power Sources, Vol. 106, No. 1, 2002, p. 206.   DOI
19 A. Heinzel, and V. M. Barragan, "A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells", Journal of Power Sources, Vol. 84, No. 1, 1999, p. 70.   DOI   ScienceOn