• Title/Summary/Keyword: cell harvesting

Search Result 156, Processing Time 0.025 seconds

Recent Progress and Prospect of Luminescent Solar Concentrator (발광형 태양광 집광기 최신 연구 동향)

  • Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.25-39
    • /
    • 2019
  • Luminescent solar concentrator (LSC), consisting of luminophore included glass or substrate with edge-mounted photovoltaic cell, is semi-transparent, energy harvesting devices. The luminophore absorbs incident solar light and re-emit photons, while the waveguide plate allows re-emitted photons to reach edge or bottom mounted photovoltaic cells with reduced losses. If the area of LSC is much larger than that of photovoltaic cell, this system can effectively concentrate solar light. In order to improve the performance of LSC, new materials and optical structures have been suggested by many research groups. For decreasing re-abosprion losses, it is essential to minimize the overlap between absorption and photoluminescence solar spectrum of luminophoroe. Moreover, the combination of selective top reflector and reflective optical cavity structure significantly boosts the waveguide efficiency in the LSC. As a result of many efforts, commercially available LSCs have been demonstrated and verified in the outdoor. Also, it is expected to generate electricity in buildings by replacing conventional glass to LSCs.

Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities (식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토)

  • Hanyong Lee;Won Hee Woo;Youn Shik Park
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

Growth characteristics of chrysanthemum according to planting density

  • Chung, Sun-Ok;Kim, Yong-Joo;Lee, Kyu-Ho;Lee, Cheol-Hwi;Noh, Hyun-Kwon
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.4
    • /
    • pp.604-612
    • /
    • 2017
  • In this study, the effects of planting density on the growth of chrysanthemum in a greenhouse were evaluated on two popular varieties (i.e., Sinma and Moonlight). Planting density treatments were as follows: 1) $12cm{\times}12cm$, 2) $6cm{\times}12cm$, 3) $6cm{\times}12cm$ with one-cell vacant, and 4) $6cm{\times}12cm$ with two-cell vacant. Size of each treatments indicate one chrysanthemum was planted in that sized cell that was rectangular shaped field and these treatments were located in a line. Moreover, "one and two-cell vacant" means that it makes middle point of the field empty, offers beside chrysanthemum larger spaces to grow. For the Sinma variety, the results of growth and flowering characteristics at the harvesting stage showed that leaf number, leaf length, flower length, and leaf area were highest when the crop was planted at the $12cm{\times}12cm$ density, and the next preferable density was $6cm{\times}12cm$ with one-cell vacant. For the Moonlight variety, the results showed that stalk height and diameter, leaf number and length, flower length, leaf area, and flower number were highest at the $12cm{\times}12cm$ planting density. For Sinma, ratios of marketable production were 87.5% and 83.3% for the $12cm{\times}12cm$ and $6cm{\times}12cm$ with two-cell vacant, respectively. For Moonlight, ratios were 88.0% and 84.3% for the $12cm{\times}12cm$ and $6cm{\times}12cm$ with two-cell vacant.

Dental-derived cells for regenerative medicine: stem cells, cell reprogramming, and transdifferentiation

  • Young-Dan Cho;Kyoung-Hwa Kim;Yong-Moo Lee;Young Ku;Yang-Jo Seol
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.6
    • /
    • pp.437-454
    • /
    • 2022
  • Embryonic stem cells have been a popular research topic in regenerative medicine owing to their pluripotency and applicability. However, due to the difficulty in harvesting them and their low yield efficiency, advanced cell reprogramming technology has been introduced as an alternative. Dental stem cells have entered the spotlight due to their regenerative potential and their ability to be obtained from biological waste generated after dental treatment. Cell reprogramming, a process of reverting mature somatic cells into stem cells, and transdifferentiation, a direct conversion between different cell types without induction of a pluripotent state, have helped overcome the shortcomings of stem cells and raised interest in their regenerative potential. Furthermore, the potential of these cells to return to their original cell types due to their epigenetic memory has reinforced the need to control the epigenetic background for successful management of cellular differentiation. Herein, we discuss all available sources of dental stem cells, the procedures used to obtain these cells, and their ability to differentiate into the desired cells. We also introduce the concepts of cell reprogramming and transdifferentiation in terms of genetics and epigenetics, including DNA methylation, histone modification, and non-coding RNA. Finally, we discuss a novel therapeutic avenue for using dental-derived cells as stem cells, and explain cell reprogramming and transdifferentiation, which are used in regenerative medicine and tissue engineering.

Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater

  • Kim, Byung-Hyuk;Choi, Jong-Eun;Cho, Kichul;Kang, Zion;Ramanan, Rishiram;Moon, Doo-Gyung;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.630-637
    • /
    • 2018
  • The high rate algal ponds (HRAP) powered and mixed by a paddlewheel have been widely used for over 50 years to culture microalgae for the production of various products. Since light incidence is limited to the surface, water depth can affect microalgal growth in HRAP. To investigate the effect of water depth on microalgal growth, a mixed microalgal culture constituting three major strains of microalgae including Chlorella sp., Scenedesmus sp., and Stigeoclonium sp. (CSS), was grown at different water depths (20, 30, and 40 cm) in the HRAP, respectively. The HRAP with 20cm of water depth had about 38% higher biomass productivity per unit area ($6.16{\pm}0.33g{\cdot}m^{-2}{\cdot}d^{-1}$) and required lower nutrients and energy consumption than the other water depths. Specifically, the algal biomass of HRAP under 20cm of water depth had higher settleability through larger floc size (83.6% settleability within 5 min). These results indicate that water depth can affect the harvesting process as well as cultivation of microalgae. Therefore, we conclude that water depth is an important parameter in HRAP design for mass cultivation of microalgae.

R&D Trends of Thermoelectrochemical Cells (전기화학 열전지의 연구 개발 동향)

  • Kang, Junsik;Kim, Kyunggu;Lee, Hochun
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.3
    • /
    • pp.79-86
    • /
    • 2019
  • Most of low-grad heat (< $200^{\circ}C$) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the thermoelectrics (TE) technology has been widely investigated so far. However, TE suffers from poor performance and high material cost. As an alternative to the TE device, the thermoelectrical cell (TEC) is gaining growing attention these days. The TEC features several advantages such as high Seebeck coefficient, low cost and design flexibility compared to TE, but its commercial viability was limited by its low heat-to-electricity conversion efficiency. However, recent reports have demonstrated that the performance of TEC can be markedly improved by employing novel electrode/electrolyte materials and by optimizing cell design. This article summarizes the recent progress of TECs in terms of the redox couples, electrolyte solvents and additives, electrode materials and cell design.

Properties of CoGe thin film-based galvanic cells and their applications for IoT sensor networks (CoGe 박막 기반 galvanic cell의 특성 및 IoT 센서 네트워크에 대한 적용)

  • Jeon, Buil;Han, Dongsoo;Yoon, Giwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1347-1356
    • /
    • 2022
  • In this paper, we investigate the properties of CoGe thin film-based galvanic cells as a function of their dimension (cell length, width, etc.) and show their application as sensors to Arduino-based IoT sensor networks to detect water contact. Because these CoGe thin film-based galvanic cells do not require mechanical strains or temperature gradients unlike piezoelectric and thermoelectric energy harvesters, we think that these thin film-based galvanic cells are more suitable for self-powered sensor networks demanding sustainable and robust energy harvesters. In the past, a sputter-deposited CoGe thin film has not been intensively investigated for energy harvesting appilcations. Thus, in this study, we perform a feasibility study of galvanic cells composed of a sputter-deposited CoGe thin film to see if they can be applied as potential self-powered sensors. We believe that this paper will be of great help in developing even more enhanced sensor networks.

Surgical Anatomy of Temporalis Muscle Transfer with Fascia Lata Augmentation for the Reanimation of the Paralyzed Face: A Cadaveric Study

  • Yi Zhang;Johannes Steinbacher;Wolfgang J. Weninger;Ulrike M. Heber;Lukas Reissig;Erdem Yildiz;Chieh-Han J. Tzou
    • Archives of Plastic Surgery
    • /
    • v.50 no.1
    • /
    • pp.42-48
    • /
    • 2023
  • Background The temporalis muscle flap transfer with fascia lata augmentation (FLA) is a promising method for smile reconstruction after facial palsy. International literature lacks a detailed anatomical analysis of the temporalis muscle (TPM) combined with fascia lata (FL) augmentation. This study aims to describe the muscle's properties and calculate the length of FL needed to perform the temporalis muscle flap transfer with FLA. Methods Twenty nonembalmed male (m) and female (f) hemifacial cadavers were dissected to investigate the temporalis muscle's anatomy. Results The calculated minimum length of FL needed is 7.03cm (f) and 5.99cm (m). The length of the harvested tendon is 3.16cm/± 1.32cm (f) and 3.18/± 0.73cm (m). The length of the anterior part of the temporalis muscle (aTPM) is 4.16/± 0.80cm (f) and 5.30/± 0.85cm (m). The length of the posterior part (pTPM) is 5.24/± 1.51cm (f) and 6.62/± 1.03cm (m). The length from the most anterior to the most posterior point (aTPMpTPM) is 8.60/± 0.98cm (f) and 10.18/± 0.79cm (m). The length from the most cranial point to the distal tendon (cTPMdT) is 7.90/± 0.43cm (f) and 9.79/± 1.11cm (m). Conclusions This study gives basic information about the temporalis muscle and its anatomy to support existing and future surgical procedures in their performance. The recommended minimum length of FL to perform a temporalis muscle transfer with FLA is 7.03cm for female and 5.99cm for male, and minimum width of 3 cm. We recommend harvesting some extra centimeters to allow adjusting afterward.

Optimization of Human Thrombopoietin Production in Insert Cells Using Baculovirus Expression System (베큘로 바이러스 발현 시스템에 의한 곤충세포에서의 인간 트롬보포이에틴 생산 최적화)

  • 고여욱;손미영;박상규;안혜경;박승국;박명환;양재명
    • KSBB Journal
    • /
    • v.13 no.2
    • /
    • pp.181-186
    • /
    • 1998
  • In order to obtain high-level production of recombinant human thrombopoietin (rhTPO) in insect cell line, HTI-TN-5B1-4 (TN5), conditions for optimal rhTPO expression such as multiplicity of infection (MOI), the cell density at infection, harvesting time and type of culture method as well as growth media were determined. When TN5 cells were cultured as anchorage-dependent state in 60-mm dish, cell density $2\times^6$ cells,MOI of 10 and Garvesting the culture media at 72 hr post-infection wrere the cinditions for highest rh TPO production. High production of rhTPO was also achieved by using EXPRESS FIVE serum free media rather than SF900II serum free media-1. Anchorage-dependent TN5 cells were adapted as a suspension culture when they were grown in the presence of heparin. TN5 cells were successfully cultured at 0.2 L scale in suspension culture without having aggregation. When TN5 cells were cultured as suspension state, cell density of $0.6\times10^6$ cells/mL, MOI of 1 and harvesting the culture media at 72 hr post-infection, gave the highest yield of rhTPO.

  • PDF

Factors Indicating Culture Status During Cultivation of Spirulina (Arthrospira) platensis

  • Kim, Choong-Jae;Jung, Yun-Ho;Oh, Hee-Mock
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.122-127
    • /
    • 2007
  • Factors indicating culture status of two Spirulina platensis strains were monitored in a batch mode cultivation for 36 days. Changing mode in all factors showed a common turning point, indicating shift of cell or culture status. Mean biomass productivity was highly sustained until day 22, chlorophyll a concentration peaked on day 22, pH value was > 12 on day 22, coil number was abruptly shortened on day 22, and floating activity was sustained at greater than 79% after day 22, indicating that day 22 is a criterion reflecting phase-transfer in cell physiology in a batch culture system. Many of these changes may have been caused by increased pH, suggesting that pH control is essential for mass production of S. platensis. Fluctuations in floating activity were likely induced by the number of cellular gas vacuoles. Consequently, coil number per trichome and floating activity of S. platensis could readily act as simple indicators for determination of culture status or harvesting time of cells.