Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.3.79

R&D Trends of Thermoelectrochemical Cells  

Kang, Junsik (School of Undergraduate Studies, DGIST)
Kim, Kyunggu (Department of Energy Science and Engineering, DGIST)
Lee, Hochun (Department of Energy Science and Engineering, DGIST)
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.3, 2019 , pp. 79-86 More about this Journal
Abstract
Most of low-grad heat (< $200^{\circ}C$) generated from industrial process and human body, is abandoned as waste heat. To harvest the waste heat, the thermoelectrics (TE) technology has been widely investigated so far. However, TE suffers from poor performance and high material cost. As an alternative to the TE device, the thermoelectrical cell (TEC) is gaining growing attention these days. The TEC features several advantages such as high Seebeck coefficient, low cost and design flexibility compared to TE, but its commercial viability was limited by its low heat-to-electricity conversion efficiency. However, recent reports have demonstrated that the performance of TEC can be markedly improved by employing novel electrode/electrolyte materials and by optimizing cell design. This article summarizes the recent progress of TECs in terms of the redox couples, electrolyte solvents and additives, electrode materials and cell design.
Keywords
Thermoelectrochemical Cell; Thermogalvanic Cell; Thermal Energy Harvesting, Waste Heat; Redox Couple; Seebeck;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. R. M. Siddique, S. Mahmud and B. Van Heyst, 'A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges' Renewable and Sustainable Energy Reviews, 73, 730-744 (2017).   DOI
2 T. Quickenden and Y. Mua, 'A review of power generation in aqueous thermogalvanic cells' J. Electrochem. Soc., 142, 3985-3994 (1995).   DOI
3 J. Agar and W. Breck, 'Thermal diffusion in non-isothermal cells. Part 1.-Theoretical relations and experiments on solutions of thallous salts' Transactions of the Faraday Society, 53, 167-178 (1957).   DOI
4 P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng and J. Zhou, 'Wearable thermocells based on gel electrolytes for the utilization of body heat' Angew. Chem. Int. Ed., 55, 12050-12053 (2016).   DOI
5 T. J. Abraham, D. R. MacFarlane and J. M. Pringle, 'Seebeck coefficients in ionic liquids-prospects for thermo-electrochemical cells' Chem. Commun., 47, 6260-6262 (2011).   DOI
6 M. A. Buckingham, F. Marken and L. Aldous, 'The thermoelectrochemistry of the aqueous iron (ii)/iron (iii) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion' Sustainable Energy & Fuels, 2, 2717-2726 (2018).   DOI
7 J. T. Hupp and M. J. Weaver, 'Solvent, ligand, and ionic charge effects on reaction entropies for simple transition-metal redox couples' Inorg. Chem., 23, 3639-3644 (1984).   DOI
8 N. Sutin, M. J. Weaver and E. L. Yee, 'Correlations between outer-sphere self-exchange rates and reaction entropies for some simple redox couples' Inorg. Chem., 19, 1096-1098 (1980).   DOI
9 D. Al-Masri, M. Dupont, R. Yunis, D. R. MacFarlane and J. M. Pringle, 'The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cells' Electrochim. Acta, 269, 714-723 (2018).   DOI
10 K. Kim and H. Lee, 'Thermoelectrochemical cells based on Li+/Li redox couples in LiFSI glyme electrolytes' Phys. Chem. Chem. Phys., 20, 23433-23440 (2018).   DOI
11 A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo and J. M. Pringle, 'Application of a water-soluble cobalt redox couple in free-standing cellulose films for thermal energy harvesting' Electrochim. Acta, 297, 669-675 (2019).   DOI
12 M. Diaw, A. Chagnes, B. Carre, P. Willmann and D. Lemordant, 'Mixed ionic liquid as electrolyte for lithium batteries' J. Power Sources, 146, 682-684 (2005).   DOI
13 A. J. Bard and L. R. Faulkner, 'Electrochemical methods', 66, John Wiley & Sons, New York (2001).
14 T. Kim, J. S. Lee, G. Lee, H. Yoon, J. Yoon, T. J. Kang and Y. H. Kim, 'High thermopower of ferri/ferrocyanide redox couple in organic-water solutions' Nano Energy, 31, 160-167 (2017).   DOI
15 M. A. Lazar, D. Al-Masri, D. R. MacFarlane and J. M. Pringle, 'Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures' Phys. Chem. Chem. Phys., 18, 1404-1410 (2016).   DOI
16 J. Duan, B. Yu, K. Liu, J. Li, P. Yang, W. Xie, G. Xue, R. Liu, H. Wang and J. Zhou, 'PN conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting' Nano Energy, 57, 473-479 (2019).   DOI
17 P. F. Salazar, S. T. Stephens, A. H. Kazim, J. M. Pringle and B. A. Cola, 'Enhanced thermo-electrochemical power using carbon nanotube additives in ionic liquid redox electrolytes' Journal of materials chemistry a, 2, 20676-20682 (2014).   DOI
18 A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo and J. M. Pringle, 'Quasi-solid-State Electrolytes for Low-Grade Thermal Energy Harvesting using a Cobalt Redox Couple' ChemSusChem, 11, 2788-2796 (2018).   DOI
19 R. Hu, B. A. Cola, N. Haram, J. N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas and A. Gestos, 'Harvesting waste thermal energy using a carbon-nanotube-based thermo-electrochemical cell' Nano Lett., 10, 838-846 (2010).   DOI
20 L. Jin, G. W. Greene, D. R. MacFarlane and J. M. Pringle, 'Redox-active quasi-solid-state electrolytes for thermal energy harvesting' ACS Energy Letters, 1, 654-658 (2016).   DOI
21 M. S. Romano, N. Li, D. Antiohos, J. M. Razal, A. Nattestad, S. Beirne, S. Fang, Y. Chen, R. Jalili and G. G. Wallace, 'Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications' Adv. Mater., 25, 6602-6606 (2013).   DOI
22 H. Im, T. Kim, H. Song, J. Choi, J. S. Park, R. Ovalle-Robles, H. D. Yang, K. D. Kihm, R. H. Baughman and H. H. Lee, 'High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes' Nature communications, 7, 10600 (2016).   DOI
23 T. J. Abraham, N. Tachikawa, D. R. MacFarlane and J. M. Pringle, 'Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials' Phys. Chem. Chem. Phys., 16, 2527-2532 (2014).   DOI
24 P. F. Salazar, S. Kumar and B. A. Cola, 'Design and optimization of thermo-electrochemical cells' J. Appl. Electrochem., 44, 325-336 (2014).   DOI
25 T. Quickenden and Y. Mua, 'The power conversion efficiencies of a thermogalvanic cell operated in three different orientations' J. Electrochem. Soc., 142, 3652-3659 (1995).   DOI
26 S. W. Hasan, S. M. Said, M. F. M. Sabri, A. S. A. Bakar, N. A. Hashim, M. M. I. M. Hasnan, J. M. Pringle and D. R. MacFarlane, 'High thermal gradient in thermo-electrochemical cells by insertion of a poly (vinylidene fluoride) membrane' Scientific reports, 6, 29328 (2016).   DOI
27 T. J. Abraham, D. R. MacFarlane and J. M. Pringle, 'High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting' Energy & Environmental Science, 6, 2639-2645 (2013).   DOI
28 L. Zhang, T. Kim, N. Li, T. J. Kang, J. Chen, J. M. Pringle, M. Zhang, A. H. Kazim, S. Fang and C. Haines, 'High Power Density Electrochemical Thermocells for Inexpensively Harvesting Low?Grade Thermal Energy' Adv. Mater., 29, 1605652 (2017).   DOI
29 A. Gunawan, C.-H. Lin, D. A. Buttry, V. Mujica, R. A. Taylor, R. S. Prasher and P. E. Phelan, 'Liquid thermoelectrics: review of recent and limited new data of thermogalvanic cell experiments' Nanoscale and Microscale Thermophysical Engineering, 17, 304-323 (2013).   DOI
30 B. Burrows, 'Discharge behavior of redox thermogalvanic cells' J. Electrochem. Soc., 123, 154-159 (1976).   DOI