Browse > Article

Factors Indicating Culture Status During Cultivation of Spirulina (Arthrospira) platensis  

Kim, Choong-Jae (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Jung, Yun-Ho (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hee-Mock (Environmental Biotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology / v.45, no.2, 2007 , pp. 122-127 More about this Journal
Abstract
Factors indicating culture status of two Spirulina platensis strains were monitored in a batch mode cultivation for 36 days. Changing mode in all factors showed a common turning point, indicating shift of cell or culture status. Mean biomass productivity was highly sustained until day 22, chlorophyll a concentration peaked on day 22, pH value was > 12 on day 22, coil number was abruptly shortened on day 22, and floating activity was sustained at greater than 79% after day 22, indicating that day 22 is a criterion reflecting phase-transfer in cell physiology in a batch culture system. Many of these changes may have been caused by increased pH, suggesting that pH control is essential for mass production of S. platensis. Fluctuations in floating activity were likely induced by the number of cellular gas vacuoles. Consequently, coil number per trichome and floating activity of S. platensis could readily act as simple indicators for determination of culture status or harvesting time of cells.
Keywords
coil number; culture status; cyanobacteria; floating activity; Spirulina platensis;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Dinsdale, M.T. and A.E. Walsby. 1972. The interrelations of cell turgor pressure, gas-vacuolation, and buoyancy in a blue-green alga. J. Exp. Bot. 23, 561-570   DOI
2 Lee, S.H., T. Motomura, and T. Ichimura. 2002. Light and electron microscopic observations of preferential destruction of chloroplast and mitochondrial DNA at early male gametogenesis of the anisogamous green alga Derbesia tenuissima (Chlorophyta). J. Phycol. 38, 534-542   DOI
3 Lu, J., G. Yoshizaki, K. Sakai, and T. Takeuchi. 2002. Acceptability of raw Spirulina platensis by larval tilapia Oreochromis niloticus. Fish. Sci. 68, 51-58   DOI   ScienceOn
4 Walsby, A.E. 1969. The permeability of blue-green algal gas vacuole membranes to gas. Proc. R. Soc. London Ser. B 173, 235-255
5 Walsby, A.E. 1971. The pressure relationships of gas vacuoles. Proc. R. Soc. London Ser. B 178, 301-326
6 Stumn, W. and J.J. Morgan. 1981. Aquatic Chemistry. 2nd (ed.), Wiley, New York, USA
7 Walsby, A.E. 1994. Gas Vesicles. Microbiol. Rev. 58, 94-144   PUBMED
8 van Rijn, J. and M. Shilo. 1985. Carbohydrate fluctuations, gas vacuolation, and vertical migration of scum-forming cyanobacteria in fish ponds. Limnol. Oceanogr. 30, 1219-1228   DOI   ScienceOn
9 Ciferri, O. 1983. Spirulina, the edible micro-organism. Microbiol. Rev. 47, 551-578   PUBMED
10 Schlesinger, P., S. Belkin, and S. Boussiba. 1996. Sodium deprivation under alkaline conditions causes rapid death of the filamentous cyanobacterium Spirulina platensis. J. Phycol. 32, 608-613   DOI   ScienceOn
11 Belkin, S. and S. Boussiba. 1991. Resistance of Spirulina platensis to ammonia at high pH values. Plant Cell Physiol. 32, 953-958   DOI
12 Zarouk, C. 1966. Contribution aletude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. Et Gardner) Geitler. Ph. D. thesis, University of Paris, France
13 Belay, A., T. Kato, and Y. Ota. 1996. Spirulina (Arthrospira): potential application as an animal feed supplement. J. Appl. Phycol. 8, 303-311   DOI
14 Gitelson, A., S. Laorawat, G.P.P. Keydan, and A. Vonshak. 1995. Optical properties of dense algal cultures outdoors and its application to remote estimation of biomass and pigment concentration in Spirulina platensis. J. Phycol. 31, 828-834   DOI   ScienceOn
15 Richmond, A. and J.U. Grobbelaar. 1986. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10, 253-264   DOI   ScienceOn
16 Strickland, J.D.H. and T.R. Parson. 1968. A Practical Handbook of Seawater Analysis. Fisheries Research Board of Canada, Ottawa, Canadad
17 Richmond, A. 2000. Microalgal biotechnology at the turn of the millennium: A personal view. J. Appl. Phycol. 12, 441-451   DOI   ScienceOn
18 Dainippon Ink and Chemicals. 1985. Lina Blue A (Natural blue colorant of Spirulina origin). Technical information Dainippon Ink and Chemicals, Tokyo, Japan
19 Zhao, Y., H. Wu, H. Guo, M. Xu, K. Cheng, and H. Zhu. 2001. Vacuolation induced by unfavorable pH in cyanobacteria. Prog. Nat. Sci. 11, 934-936
20 Belay, A., Y. Ota, K. Miyakawa, and H. Shimamatsu. 1993. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5, 235-241   DOI
21 Kim, S.G., A. Choi, C.Y. Ahn, C.S. Park, Y.H. Park, and H.M. Oh. 2005. Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett. Appl. Microbiol. 40, 190- 194   DOI   ScienceOn
22 Walsby, A.E. 1982. Cell-water and cell-solute relations. p 237-262. In N.G. Carr and B.A. Whitton (eds), The Biology of Cyanobacteria, Blackwell Science Publications, Oxford