• Title/Summary/Keyword: cell cycles

Search Result 528, Processing Time 0.029 seconds

Study on Production of Cloned Animals by Recycling Nuclear Transplantation II. Improved Second Generation Cloning of Rabbit Embryos Using Donor Nuclei with Synchronized Cell Cycles (반복핵이식에 의한 복제동물 생산에 관한 연구 II. 토끼에서 공핵배의 세포주기 조절에 의한 제2세대 복제배의 생산효율 개선)

  • 이효종;전병균;박충생;최상용;윤창현;강대진
    • Journal of Embryo Transfer
    • /
    • v.10 no.1
    • /
    • pp.73-82
    • /
    • 1995
  • large scale production of cloned embryos requires the technology of multiple generation nuclear transplantation(NT) using NT embryos as the subsequent donor nuclei. The purposes of this study were producing the second generation cloned rabbit embryos, and also to determine the electrofusion rate and in vitro developmental potential comparatively in the cloned embryos of the first and second NT generation. The embryos of 16-cell stage were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline(D-PBS) containing 10% fetal calf serum(FCS) at 47 hours after hCG injection In the first generation NT, the nuclear donor embryos were synchronized in the phase of Gi /S transition of 32-cell stage. The first generation NT embryos which were developed to 8-cell were synchronized in Gi /S transition phase of the following 16-cell stage and used as donor nuclei for second generation Synchronization of the cell cycle of blastomeres was induced, first, using an inhibitor of microtuble polymerization, colcemid for 10 hours to arrest blastomeres in M phase, and secondly, using a DNA synthesis inhibitor, aphidicolin for 1.5 to 2 hours to arrest them in Gi /S transition boundary. The recipient cytoplasms were obtained by removing the nucleus and the first polar body from the oocytes collected at 14 hours after hCG injection. The separated donor blastomeres were injected into the enucleated recipient oocytes by micromanipulation and were electrofused by electrical stimulation of three pulses for 60 $\mu$sec at 1.25 kV /cm in 0.28 M rnannitol solution The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$ incubator. Following in vitro culture of the first and second generation cloned embryos to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The results obtained were summarized as follows: 1. The electrofusion rate was found to be similar as 79.4 and 91.5% in the first and second generation NT rabbit embryos, respectively. 2. The in vitro developmental potential to blastocyst stage of the second generation NT embryos (23.3%) was found significantly(p<0.05) lower, compared with that of the first generation NT embryos (56.8%). 3. The mean blastomeres counts of embryos developed to blastosyst stage following in vitro culture for 120 hours and also their daily cell cycles during the culture period were decreased significantly (p<0.05) to 104.3 cells and 1.33 cylces in the second NT generation, compoared with 210.4 cells and 1.54 cycles in the first NT generation, respectively.

  • PDF

Hydrogen Storage Properties of Hydriding-Dehydriding Cycled Magnesium-Nickel-Iron Oxide Alloy

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung;Kim, Byoung-Goan
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.171-175
    • /
    • 2012
  • By measuring the absorbed hydrogen quantity as a function of the number of cycles, the cycling properties of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy were investigated. The absorbed hydrogen quantity decreased as the number of cycles increased. The $H_a$ value varied almost linearly with the number of cycles. The maintainability of absorbed hydrogen quantity at n=100 was 89.0% for the hydriding reaction time of 10 min. After the $150^{th}$ hydriding-dehydriding cycle, Mg, $Mg_2Ni$, $Mg(OH)_2$, MgO, and Fe were observed. The phases were analyzed by Rietveld analysis from the XRD patterns of the Mg-15 wt%Ni-5 wt%$Fe_2O_3$ alloy after 150 hydriding-dehydriding cycles. The crystallite size and strain of Mg were then estimated with the Williamson-Hall technique.

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test (장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구)

  • Kang, Min-Soo;Kim, Do-Seok;Jeon, Yu-Jae;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

Insertional mutations exhibiting high cell-culture density HCD phenotypes are enriched through continuous subcultures in Chlamydomonas reinhardtii

  • Thung, Leena;He, Jing;Zhu, Qingling;Xu, Zhenyu;Liu, Jianhua;Chow, Yvonne
    • ALGAE
    • /
    • v.33 no.1
    • /
    • pp.127-141
    • /
    • 2018
  • Low efficiency in microalgal biomass production was largely attributed to the low density of algal cell cultures. Though mutations that reduced the level of chlorophyll or pigment content increased efficiency of photon usage and thus the cell-culture density under high-illumination growth conditions (e.g., >$500{\mu}mol\;photon\;m^{-2}\;s^{-1}$), it was unclear whether algae could increase cell-culture density under low-illumination conditions (e.g., ${\sim}50{\mu}mol\;photon\;m^{-2}\;s^{-1}$). To address this question, we performed forward genetic screening in Chlamydomonas reinhardtii. A pool of >1,000 insertional mutants was constructed and subjected to continuous subcultures in shaking flasks under low-illumination conditions. Complexity of restriction fragment length polymorphism (RFLP) pattern in cultures indicated the degree of heterogeneity of mutant populations. We showed that the levels of RFLP complexity decreased when cycles of subculture increased, suggesting that cultures were gradually populated by high cell-culture density (HCD) strains. Analysis of the 3 isolated HCD mutants after 30 cycles of subcultures confirmed that their maximal biomass production was 50-100% higher than that of wild type under low-illumination. Furthermore, levels of chlorophyll content in HCD mutant strains were similar to that of wild type. Inverse polymerase chain reaction analysis identified the locus of insertion in two of three HCD strains. Molecular and transcriptomic analyses suggested that two HCD mutants were a result of the gain-of-function phenotype, both linking to the abnormality of mitochondrial functions. Taken together, our results demonstrate that HCD strains can be obtained through continuous subcultures under low illumination conditions.

Design and Development of 600 W Proton Exchange Membrane Fuel Cell (600 W급 연료전지(PEMFC)의 설계 및 제작)

  • Kim, Joo-Gon;Chung, Hyun-Youl;Bates, Alex;Thomas, Sobi;Son, Byung-Rak;Park, Sam;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.

Effects of Shut-down Process on Degradation of Polymer Electrolyte Membrane Fuel Cells I. Effects of Hydrogen Removal on the Degradation (운전 정지 시 보관방법이 고분자 전해질 연료전지의 열화에 미치는 영향 I. 잔류 수소 제거 방법의 영향)

  • Lim, Sang-Jin;Cho, Eun-Ae;Lee, Sang-Yeop;Kim, Hyoung-Juhn;Lim, Tae-Hoon;Lee, Kwan-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.3
    • /
    • pp.118-123
    • /
    • 2006
  • Degradation of polymer electrolyte membrane fuel cell (PEMFC) that is facilitated by on/off cycles is one of the most important issues for commercialization of fuel cell vehicles. When a PEMFC stack is shut down, residual hydrogen and induce high voltage equivalent to open circuit voltage to the cathode side that might cause sintering of Pt catalyst and facilitate formation of hydrogen peroxide at the anode side that might decompose $Nafionc\'{A}$ membrane. In this study, degradation of PEMFC exposed to repetitive on/off cycles was investigated by measuring i-V characteristics, ac impedance, cyclic voltammograms, gas leak, cross-sectional SEM images, and TEM images. To prevent degradation of PEMFC caused by the residual gases, hydrogen was removed from anode gas channel by gas-purging and by using a dummy resistance, that were found to be a very effective method.

Effect of Testicular Histopathology on Pregnancy Outcomes in Non-Obstructive Azoospermia (비폐쇄성 무정자증 환자에서 고환의 조직병리학적 진단에 따른 체외수정시술 결과의 비교)

  • Park, Chan-Woo;Seo, Ju-Tae;Park, Yong-Seog;Kim, Hye-Ok;Yang, Kwang-Moon;Kim, Jin-Young;Koong, Mi-Kyoung;Kang, Inn-Soo;Song, In-Ok
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.4
    • /
    • pp.293-301
    • /
    • 2008
  • Objective: To evaluate outcomes of patients with non-obstructive azoospermia (NOA) undergoing the testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection (ICSI) with different histopathologic subgroups. Method: A total of 122 embryo-transferred TESE/ICSI cycles were compared among NOA subgroups; Germ-cell aplasia (GA, 40 cycles), Maturation arrest (MA, 32 cycles) and severe hypospermatogenesis (S-HS, 50 cycles). Obstructive azoospermia (OA, 667 cycles) patients were served as a control. TESE/ICSI outcomes such as fertilization rate (FR), clinical pregnancy rate (CPR) and live birth rate (LBR) were evaluated. Results: The 2PN FR of embryo-transferred TESE/ICSI cycle was 58.1% in GA, 42.2% in MA and 48.0% in S-HS, which was significantly lower than that of OA (72.9 %, p<0.001). For ICSI-spermatozoa cycles, there were no significant differences in CPR (22.6%, 29.4% and 26.1%) and LBR (16.1%, 29.4% and 19.6%) among NOA subgroups. The CPR of ICSI-spermatid cycles was 0.0%, 9.1% and 0.0% without a live birth. For ICSI-spermatocyte cycles, no clinical pregnancies occurred in any group. Conclusion: There was no significant difference in the FR of embryo-transferred TESE/ICSI cycles among NOA subgroups. The FR among all NOA subgroups was significantly lower than that of OA. Testicular histopathology in NOA did not affect successful pregnancy if spermatozoa extraction from the testis is successful and embryo transfer is possible.

Experimental Study of Freeze and Thaw Effect on Gas Diffusion Layer Using XRay Tomography (X-선 단층 촬영을 이용한 동결과 융해가 기체확산층에 미치는 영향에 대한 실험적 연구)

  • Je, Jun-Ho;Kim, Jong-Rok;Doh, Sung-Woo;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.487-490
    • /
    • 2011
  • We used X-ray tomography to carry out an experimental study to visualize the effect of freeze and thaw cycles on the gas diffusion layer (GDL) in a polymer electrolyte membrane fuel cell (PEMFC). A PEMFC has freeze and thaw cycles if the fuel cell is operating at a below-freezing ambient temperature. The cycle permanently deforms the fuel-cell capillary structures and reduces the ability of the cell to generate electric power and also reduces its service life. The GDL is the thickest capillary layer in the fuel cell, so it experiences the most deformation. The X-ray tomography facility at the Pohang Accelerator Laboratory was used to observe the structural changes in GDLs induced by a freeze and thaw cycle. We discuss the effects of these structural changes on the power production and service life of PEMFCs.

Study of Improvement Life and Electrochemical Characteristics for Lithium/sulfur Battery using Porous Carbon Sphere (다공성 구형 탄소를 이용한 리튬/유황 전지의 수명개선 및 전기화학특성 연구)

  • Hur, Sung Kyu;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2021
  • Dissociation into Lithium-polysulfide electrolyte due to repeated cycles during the Lithium/Sulfur battery reaction is a major problem of reduced battery lifespan. We searched for a porous carbon with a large specific surface area that infiltrated S to prevent liquid Lithium-polysulfide from being dissolved in electrolyte, induce adsorption of Lithium-polysulfide, and further increase conductivity. In order to obtain porous carbon spheres with a large specific surface area, the carbon spheres of 1939 m2/g were raised to 2200 m2/g through additional KOH treatment. In addition, through heat treatment with S, a carbon sulfur compound containing 75 wt% of S was fabricate and material analysis was conducted on the possibility of using the cathode material. The electrochemical characteristics of the Reference (622; sulfur: 60%, conductive material: 20%, binder: 20%) pouch cell and the pouch cell made using 75wt% of carbon sulfur compound were analyzed. 75wt% of carbon sulfur pouch cell showed a 20% increase in lifespan and 10% improvement in C-rate compared to the Reference pouch cell after 50 cycles.

ANTI-CANCER EFFECT OF CYCLOSPORIN A ON ORAL SQUAMOUS CELL CARCINOMA CELL LINE (Cyclosporin A가 구강편평상피세포암 세포주에 미치는 항암효과)

  • Lim, Han-Wook;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.474-481
    • /
    • 2004
  • Squamous cell carcinoma is the most prevalent oral cancer, which is characterized by its low survival rate, high malignancy, mortality with facial defects, and poor prognosis. Exact cause and pathogenesis of the squamous cell carcinoma is still unknown. Various routes including smoking, radiation, and viral infections predispose its genesis, and recent studies revealed that genetic defects which fail to prevent cancer proliferation play a role. Generally, a cancer develops from the decreased rate of apoptosis which is an active and voluntary cell death, and from the altered cell cycles. Anticancer effect can be obtained by recovering the apoptotic process, and by suppressing the cell cycles. Among the apoptosis related factors, bcl-2, caspase-9, and VDAC (voltage-dependent anion channel)are produced in mitochondria of the cell. Cyclosporin-A is known to induce apoptosis through its activation with VDAC. This study was to reveal the anticancer effect of Cyclosporin A to the oral squamous cell carcinoma. The inverted microscope was used to find alterations in the tissue, and sensitivity test to the anticancer cells was performed with MTT (Tetrazolium-based colorimetric) assay. Following cell line culture of primary and metastastic oral squamous cell carcinoma, electrophoresis was performed with extracted total RNA. Finally, semi-quantitative study was carried out through RT-PCR (Reverse Transcription-Polymerase Chain Reaction). The results of this study are as follows: 1. The inverted microscopic observation revealed a poorly defined cytoplasm at $2000ng{\sim}3000ng/ml$, indistinct nucleus, and apoptosis. 2. The Growth of cancer cells was decreased at 1000ng/ml of cyclosporin-A. No cancer cell growth was observed at over 2000ng/ml concentration of cyclosporin-A, and at one week, growth of cancer cells was ceased. 3. The MTT assays were decreased as cyclosporin-A concentration was increased. This means that the activation of succinyl dehydrogenase in mitochondria was decreased following administration of cyclosporin A. 4. A result of RT-PCR showed that amount of mRNA of VDAC-2 was decreased half times at a cyclosporine-A concentration of 2000ng/ml. In bcl-2, amount of mRNA was significantly decreased 1/5 times at 2000ng/ml. caspase-9, however, showed slight increase compared to the control group. From the results obtained in this study, administration of cyclosporin-A to the cell lines of oral squamous cell carcinoma induced alterations in morphology and growth of the cells as its concentration increased. Since apoptosis related factors such as VDAS-2, bcl-2, and caspase-9 also showed distinct alterations on their mRNAs, further research on cyclosporin A as an anti-cancer agent will be feasible.