• Title/Summary/Keyword: cell cycle gene

Search Result 539, Processing Time 0.027 seconds

Stage specific transcriptome analysis of liver tissue from a crossbred Korean Native Pig (KNP × Yorkshire)

  • Kumar, Himansu;Srikanth, Krishnamoorthy;Park, Woncheol;Lee, Kyung-Tai;Choi, Bong-Hwan;Kim, Jun-Mo;Lim, Dajeong;Park, Jong-Eun
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.116-124
    • /
    • 2018
  • Korean Native Pig (KNP) has a uniform black coat color, excellent meat quality, white colored fat, solid fat structure and good marbling. However, its growth performance is low, while the western origin Yorkshire pig has high growth performance. To take advantage of the unique performance of the two pig breeds, we raised crossbreeds (KNP ${\times}$ Yorkshire to make use of the heterotic effect. We then analyzed the liver transcriptome as it plays an important role in fat metabolism. We sampled at two stages: 10 weeks and at 26 weeks. The stages were chosen to correspond to the change in feeding system. A total of 16 pigs (8 from each stage) were sampled and RNA sequencing was performed. The reads were mapped to the reference genome and differential expression analysis was performed with edgeR package. A total of 324 genes were found to be significantly differentially expressed (${\left|log2FC\right|}$ > 1 & q < 0.01), out of which 180 genes were up-regulated and 144 genes were down-regulated. Principal Component Analysis (PCA) showed that the samples clustered according to stages. Functional annotation of significant DEGs (differentially expressed genes) showed that GO terms such as DNA replication, cell division, protein phosphorylation, regulation of signal transduction by p53 class mediator, ribosome, focal adhesion, DNA helicase activity, protein kinase activity etc. were enriched. KEGG pathway analysis showed that the DEGs functioned in cell cycle, Ras signaling pathway, p53 signaling pathway, MAPK signaling pathway etc. Twenty-nine transcripts were also part of the DEGs, these were predominantly Cys2His2-like fold group (C2H2) family of zinc fingers. A protein-protein interaction (PPI) network analysis showed that there were three highly interconnected clusters, suggesting an enrichment of genes with similar biological function. This study presents the first report of liver tissue specific gene regulation in a cross-bred Korean pig.

Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells (SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과)

  • Jang, Mi Gyeong;Ko, Hee Chul;Kim, Se-Jae
    • Journal of Life Science
    • /
    • v.29 no.7
    • /
    • pp.809-816
    • /
    • 2019
  • The ubiquitous plant metabolite p-coumaric acid (p-CA) has antioxidant and anti-inflammatory properties, but its anti-cancer activity has not been established in gastric cancer cell lines. In this study, we investigated the effects of p-CA on the proliferation and transcriptome profile of SNU16 gastric cancer cells. Treatment with p-CA induced apoptosis of the SNU-16 cells by regulating the expression of pro-apoptotic and anti-apoptotic proteins, such as Bcl-2, poly (ADP-ribose) polymerase (PARP), Bax, procaspase-3, and cleaved-caspase-3. The genes differentially expressed in response to p-CA treatment of the SNU-16 cells were identified by RNA sequencing analysis. Genes regulated by p-CA were involved mainly in the inflammatory response, apoptotic processes, cell cycle, and immune response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the phosphatidylinositol-3-kinase-Akt and cancer signaling pathways were altered by p-CA. Protein-protein interaction (PPI) network analysis also revealed that p-CA treatment was correlated with differential expression of genes associated with the inflammatory response and cancer. Collectively, these results suggest that p-CA has potential utility in gastric cancer prevention.

A study on the effect of microgroove-fibronectin complex titanium plate on the expression of various cell behavior-related genes in human gingival fibroblasts (인간치은섬유아세포의 다양한 세포행동 관련 유전자발현에 마이크로그루브-파이브로넥틴 복합 티타늄표면이 미치는 영향에 대한 연구)

  • Hwang, Yu Jeong;Lee, Won Joong;Leesungbok, Richard;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • Purpose: To determine the effects of the microgroove-fibronectin complex surface on the expression of various genes related to cellular activity in human gingival fibroblasts. Materials and Methods: Smooth titanium specimens (NE0), acid-treated titanium specimens (E0), microgroove and acid-treated titanium specimens (E60/10), fibronectin-fixed smooth titanium specimens (NE0FN), acid-treated and fibronectin-immobilized titanium specimens (E0FN), and microgroove and acid-treated titanium specimens immobilized with fibronectin (E60/10FN) were prepared. Real-time polymerase chain reaction experiments were conducted on 44 genes related to cell behavior of human gingival fibroblasts. Results: Adhesion and proliferation of human gingival fibroblast on microgroove-fibronectin complex titanium were activated through four types of signaling pathway. Integrin α5, Integrin β1, Integrin β3, Talin-2, which belong to the focal adhesion pathway, AKT1, AKT2, NF-κB, which belong to the PI3K-AKT signaling pathway, MEK2, ERK1, ERK2, which belong to the MAPK signaling pathway, and Cyclin D1, CDK4, CDK6 genes belonging to the cell cycle signaling pathway were upregulated on the microgroove-fibronectin complex titanium surface (E60/10FN). Conclusion: The microgroove-fibronectin complex titanium surface can up-regulate various genes involved in cell behavior.

Targeted Therapies and Radiation for the Treatment of Head and Neck Cancer (두경부 암의 표적 지향적 방사선 치료)

  • Kim, Gwi-Eon
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.77-90
    • /
    • 2004
  • Purpose: The purpose of this review Is to provide an update on novel radiation treatments for head and neck cancer Recent Findings: Despite the remarkable advances In chemotherapy and radiotherapy techniques, the management of advanced head and neck cancer remains challenging. Epidermal growth factor receptor (EGFR) Is an appealing target for novel therapies In head and neck cancer because not only EGFR activation stimulates many important signaling pathways associated with cancer development and progression, and importantly, resistance to radiation. Furthermore, EGFR overexpression Is known to be portended for a worse outcome in patients with advanced head and neck cancer. Two categories of compounds designed to abrogate EGFR signaling, such as monoclonal antibodies (Cetuxlmab) and tyrosine kinase inhibitors (ZD1839 and 051-774) have been assessed and have been most extensively studied In preclinical models and clinical trials. Additional TKIs In clinical trials include a reversible agent, Cl-1033, which blocks activation of all erbB receptors. Encouraging preclinical data for head and neck cancers resulted In rapid translation Into the clinic. Results from Initial clinical trials show rather surprisingly that only minority of patients benefited from EGFR inhibition as monotherapy or In combination with chemotherapy. In this review, we begin with a brief summary of erbB- mediated signal transduction. Subsequently, we present data on prognostic-predictive value of erbB receptor expression in HNC followed by preclinlcal and clinical data on the role of EGFR antagonists alone or in combination with radiation In the treatment of HNC. Finally, we discuss the emerging thoughts on resistance to EGFR biockade and efforts In the development of multiple-targeted therapy for combination with chemotherapy or radiation. Current challenges for investigators are to determine (1 ) who will benefit from targeted agents and which agents are most appropriate to combine with radiation and/or chemotherapy, (2) how to sequence these agents with radiation and/or cytotoxlc compounds, (3) reliable markers for patient selection and verification of effective blockade of signaling in vivo, and (4) mechanisms behind intrinsic or acquired resistance to targeted agents to facilitate rational development of multi-targeted therapy, Other molecuiar-targeted approaches In head and neck cancer were briefly described, Including angloenesis Inhibitors, farnesyl transferase inhibitors, cell cycle regulators, and gene therapy Summary: Novel targeted theraples are highly appealing in advanced head and neck cancer, and the most premising strategy to use them Is a matter of intense Investigation.

Characterization of Filamentous Cyanobacteria Encapsulated in Alginate Microcapsules (알긴산염 마이크로캡슐 내부에 동결보존된 사상체 남세균의 특성 연구)

  • Park, Mirye;Kim, Z-Hun;Nam, Seung Won;Lee, Sang Deuk;Yun, Suk Min;Kwon, Dae Ryul;Lee, Chang Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.205-214
    • /
    • 2020
  • Cyanobacteria are microorganisms which have important roles in the nitrogen cycle due to their ability to fix nitrogen in water and soil ecosystems. They also produce valuable materials that may be used in various industries. However, some species of cyanobacteria may limit the use of water resources by causing harmful algal blooms in water ecosystems. Many culture collection depositories provide cyanobacterial strains for research, but their systematic preservation is not well-developed in Korea. In this study, we developed a method for the cryopreservation of the cyanobacteria Trichormus variabilis (syn. Anabaena variabilis), using alginate microcapsules. Two approaches were used for the experiments and their outputs were compared. One of the methods involved the cryopreservation of cells using only a cryoprotectant and the other used the cryoprotectant within microcapsules. After cryopreservation for 35 days, cells preserved with both methods were successfully regenerated from the initial 1.0 × 105 cells/ml to a final concentration of 6.7 × 106 cells/ml and 1.1 × 107 cells/ml. Irregular T. variabilis shapes were found after 14 days of regeneration. T. variabilis internal structures were observed by transmission electron microscopy (TEM), revealing that lipid droplets were reduced after cryopreservation. The expression of the mreB gene, known to be related to cell morphology, was downregulated (54.7%) after cryopreservation. Cryopreservation using cryoprotectant alone or with microcapsules is expected to be applicable to other filamentous cyanobacteria in the future.

Effects of Selenate on Adipocyte Differentiation and the Expression of Selenoproteins in 3T3-L1 Cells (3T3-L1세포에서 selenate의 처리가 세포의 분화와 selenoprotein의 발현에 미치는 영향)

  • Park, Seol Hui;Moon, Yang Soo
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1085-1091
    • /
    • 2014
  • The purpose of this study was to determine the effect of selenate on adipocyte differentiation and to identify genes involved in the modulation of adipogenesis in 3T3-L1 cells. To test the effect of selenate on adipocyte differentiation, adipogenesis was induced in cells using various concentrations ($0-100{\mu}M$) of selenate. Various phases of adipogenesis were induced: postconfluent (PC), early phase (EP, d0-d2), postmitotic growth arrest (PM, d2-d4), and all period (AP). The PC cells exposed to selenate for 24 h displayed dose-dependent inhibition of intracellular lipid droplet accumulation on day 6 of adipogenesis. Two days of selenate treatment at EP or AP inhibited adipogenesis, with an approximately 20-80% reduction in lipid accumulation compared to that of a control (p<0.05). When preadipocytes were exposed to selenate during the PM period, the antiadipogenic effect of selenate was attenuated. Two types of selenoprotein genes (Seps1 and Sepp1) were up-regulated by the selenate treatment during mitotic clonal expansion, whereas these genes were down-regulated during PM growth arrest (p<0.05). The findings demonstrate the antiadipogenic function of selenate and the possible involvement of Sepp1 and Seps1 genes in selenate-inhibited adipogenesis in 3T3-L1 cells.

Antitumor Activity of Methylene Chloride Fraction from Angelica Keiskei Through Induction of Apoptosis in Human Prostate Carcinoma DU145 Cells (전립선 암세포주 DU145의 세포고사 유도를 통한 신선초 (Angelica keiskei) 메틸렌 클로라이드 추출물의 항암효과)

  • Kang, Yoon-Mook;Kim, Sung-Moo;Kim, Hyun-Jung;Park, Kyung-Ran;Shim, Bum-Sang;Kim, Sung-Hoon;Choi, Seung-Hoon;Ahn, Kyoo-Seok;Ahn, Kwang-Seok
    • Journal of Korean Traditional Oncology
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2010
  • The roots and leaves of Angelica keiskei (AK) have been used for the treatment of various diseases including coronary heartdisease, hypertension, and cancer in the Korean folk medicine. However, the mechanism by which methylenechloride fraction (MF) from AK exerts anti-tumorigenic activity in human prostate cancer cells has not been fully understood. In the present study, we report the MF exerted the highest cytotoxicity against prostate cancer DU145 cells compared with other fractions. Especially, MF caused the accumulation of sub-G1 DNA contents of cell cycle and increased annexin V-positive apoptotic bodies and DNA fragmentation. MF down-regulated several proliferative (Cyclin D1) and anti-apoptotic (Bcl-xl, Bcl-2, IAP-1/2, and survivin)gene products in these cells. Hence, MF induced apoptosis through the caspase-3 activation in DU145 cells. We further confirmed that caspase-3 plays an importance role in MF-induced apoptosis in DU145 cells by using caspase-3 inhibitor. Additionally, we observed that MF potentiated Dox-induced apoptosis in DU145 cells. Taken together, our data demonstrate the evidence that MF induces apoptosis depend on caspase-3 activation of and overcomes resistance to chemotherapy in human prostate cancer cells.

  • PDF

Molecular characterization and docking dynamics simulation prediction of cytosolic OASTL switch cysteine and mimosine expression in Leucaena leucocephala

  • Harun-Ur-Rashid, Md.;Masakazu, Fukuta;Amzad Hossain, Md.;Oku, Hirosuke;Iwasaki, Hironori;Oogai, Shigeki;Anai, Toyoaki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.36-36
    • /
    • 2017
  • Out of twenty common protein amino acids, there are many kinds of non protein amino acids (NPAAs) that exist as secondary metabolites and exert ecological functions in plants. Mimosine (Mim), one of those NPAAs derived from L. leucocephala acts as an iron chelator and reversely block mammalian cell cycle at G1/S phases. Cysteine (Cys) is decisive for protein and glutathione that acts as an indispensable sulfur grantor for methionine and many other sulfur-containing secondary products. Cys biosynthesis includes consecutive two steps using two enzymes-serine acetyl transferase (SAT) and O-acetylserine (thiol)lyase (OASTL) and appeared in plant cytosol, chloroplast, and mitochondria. In the first step, the acetylation of the ${\beta}$-hydroxyl of L-serine by acetyl-CoA in the existence of SAT and finally, OASTL triggers ${\alpha}$, ${\beta}$-elimination of acetate from OAS and bind $H_2S$ to catalyze the synthesis of Cys. Mimosine synthase, one of the isozymes of the OASTLs, is able to synthesize Mim with 3-hydroxy-4-pyridone (3H4P) instead of $H_2S$ for Cys in the last step. Thus, the aim of this study was to clone and characterize the cytosolic (Cy) OASTL gene from L. leucocephala, express the recombinant OASTL in Escherichia coli, purify it, do enzyme kinetic analysis, perform docking dynamics simulation analysis between the receptor and the ligands and compare its performance between Cys and Mim synthesis. Cy-OASTL was obtained through both directional degenerate primers corresponding to conserved amino acid region among plant Cys synthase family and the purified protein was 34.3KDa. After cleaving the GST-tag, Cy-OASTL was observed to form mimosine with 3H4P and OAS. The optimum Cys and Mim reaction pH and temperature were 7.5 and $40^{\circ}C$, and 8.0 and $35^{\circ}C$ respectively. Michaelis constant (Km) values of OAS from Cys were higher than the OAS from Mim. Inter fragment interaction energy (IFIE) of substrate OAS-Cy-OASTL complex model showed that Lys, Thr81, Thr77 and Gln150 demonstrated higher attraction force for Cys but 3H4P-mimosine synthase-OAS intermediate complex showed that Gly230, Tyr227, Ala231, Gly228 and Gly232 might provide higher attraction energy for the Mim. It may be concluded that Cy-OASTL demonstrates a dual role in biosynthesis both Cys and Mim and extending the knowledge on the biochemical regulatory mechanism of mimosine and cysteine.

  • PDF

TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells

  • Jang, Si-Jung;Jeon, Ryoung-Hoon;Kim, Hwan-Deuk;Hwang, Jong-Chan;Lee, Hyeon-Jeong;Bae, Seul-Gi;Lee, Sung-Lim;Rho, Gyu-Jin;Kim, Seung-Joon;Lee, Won-Jae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2021-2030
    • /
    • 2020
  • Objective: Quantitative polymerase chain reaction (qPCR) has been extensively used in the field of mesenchymal stem cell (MSC) research to elucidate their characteristics and clinical potential by normalization of target genes against reference genes (RGs), which are believed to be stably expressed irrespective of various experimental conditions. However, the expression of RGs is also variable depending on the experimental conditions, which may lead to false or contradictory conclusions upon normalization. Due to the current lack of information for a clear list of stable RGs in bovine MSCs, we conducted this study to identify suitable RGs in bovine MSCs. Methods: The cycle threshold values of ten traditionally used RGs (18S ribosomal RNA [18S], beta-2-microglobulin [B2M], H2A histone family, member Z [H2A], peptidylprolyl isomerase A [PPIA], ribosomal protein 4 [RPL4], succinate dehydrogenase complex, subunit A [SDHA], beta actin [ACTB], glyceraldehyde-3-phosphate dehydrogenase [GAPDH], TATA box binding protein [TBP], and hypoxanthine phosphoribosyltrasnfrase1 [HPRT1]) in bovine bone marrow-derived MSCs (bBMMSCs) were validated for their stabilities using three types of RG evaluation algorithms (geNorm, Normfinder, and Bestkeeper). The effect of validated RGs was then verified by normalization of lineage-specific genes (fatty acid binding protein 4 [FABP4] and osteonectin [ON]) expressions during differentiations of bBMMSCs or POU class 5 homeobox 1 (OCT4) expression between bBMMSCs and dermal skins. Results: Based on the results obtained for the three most stable RGs from geNorm (TBP, RPL4, and H2A), Normfinder (TBP, RPL4, and SDHA), and Bestkeeper (TBP, RPL4, and SDHA), it was comprehensively determined that TBP and RPL4 were the most stable RGs in bBMMSCs. However, traditional RGs were suggested to be the least stable (18S) or moderately stable (GAPDH and ACTB) in bBMMSCs. Normalization of FABP4 or ON against TBP, RPL4, and 18S presented significant differences during differentiation of bBMMSCs. However, although significantly low expression of OCT4 was detected in dermal skins compared to that in bBMMSCs when TBP and RPL4 were used in normalization, normalization against 18S exhibited no significance. Conclusion: This study proposes that TBP and RPL4 were suitable as stable RGs for qPCR study in bovine MSCs.