• 제목/요약/키워드: cell cycle gene

검색결과 539건 처리시간 0.029초

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.97-97
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui;Liu, Xiaoli;Xue, Mei;Li, Yu;Cai, Danhong;Wang, Shijun;Zhang, Liang
    • Journal of Ginseng Research
    • /
    • 제45권2호
    • /
    • pp.295-304
    • /
    • 2021
  • Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.

Antiproliferative Activity of Piceamycin by Regulating Alpha-Actinin-4 in Gemcitabine-Resistant Pancreatic Cancer Cells

  • Jee-Hyung Lee;Jin Ho Choi;Kyung-Min Lee;Min Woo Lee;Ja-Lok Ku;Dong-Chan Oh;Yern-Hyerk Shin;Dae Hyun Kim;In Rae Cho;Woo Hyun Paik;Ji Kon Ryu;Yong-Tae Kim;Sang Hyub Lee;Sang Kook Lee
    • Biomolecules & Therapeutics
    • /
    • 제32권1호
    • /
    • pp.123-135
    • /
    • 2024
  • Although gemcitabine-based regimens are widely used as an effective treatment for pancreatic cancer, acquired resistance to gemcitabine has become an increasingly common problem. Therefore, a novel therapeutic strategy to treat gemcitabine-resistant pancreatic cancer is urgently required. Piceamycin has been reported to exhibit antiproliferative activity against various cancer cells; however, its underlying molecular mechanism for anticancer activity in pancreatic cancer cells remains unexplored. Therefore, the present study evaluated the antiproliferation activity of piceamycin in a gemcitabine-resistant pancreatic cancer cell line and patient-derived pancreatic cancer organoids. Piceamycin effectively inhibited the proliferation and suppressed the expression of alpha-actinin-4, a gene that plays a pivotal role in tumorigenesis and metastasis of various cancers, in gemcitabine-resistant cells. Long-term exposure to piceamycin induced cell cycle arrest at the G0/G1 phase and caused apoptosis. Piceamycin also inhibited the invasion and migration of gemcitabine-resistant cells by modulating focal adhesion and epithelial-mesenchymal transition biomarkers. Moreover, the combination of piceamycin and gemcitabine exhibited a synergistic antiproliferative activity in gemcitabine-resistant cells. Piceamycin also effectively inhibited patient-derived pancreatic cancer organoid growth and induced apoptosis in the organoids. Taken together, these findings demonstrate that piceamycin may be an effective agent for overcoming gemcitabine resistance in pancreatic cancer.

배양신경세포의 저산소증모델에서 대황 물추출물에 의한 유전자 표현 변화의 microarray 분석 (Microarray Analysis of Gene Expression by Rhei Rhizoma Water Extracts in a Hypoxia Model of Cultured Neurons)

  • 이현숙;송진영;문일수
    • 생명과학회지
    • /
    • 제19권1호
    • /
    • pp.21-33
    • /
    • 2009
  • 대황(Rhei Rhizoma; RR, 대황(大黃))은 Rheum officinale Baill.와 Rheum palmatum L.(polygonaceae)의 땅속부분으로 남아시아의 민속의학에서 간 및 신장의 손상을 치료하는데 널리 이용되고 있다. 본 연구에서는 배양한 흰쥐 해마신경세포의 저산소증모델을 이용하여 대황의 물추출물이 유전자 표현에 미치는 영향을 microarray 방법을 이용하여 조사하였다. 배양 후 10일 (DIV10)에 추출물을 배지에 $2.5{\mu}g/ml$ 농도로 첨가하고, DIV13에 저산소증(2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 h)을 유발한 후 24 시간 후에 total RNA를 분리하여 microarray에 사용하였다. MA-plot에 의하면 표현이 연화된 대부분의 유전자는 ${\pm}2$배 이내로 증감되었다. 이 가운데 Global M 값이 0.2(즉, 15%)보다 더 증가한 유전자는 472종, Global M 값이 -0.2(즉, -15%)보다 더 감소한 유전자는 725종이였다. 세포의 생존과 관련된 유전자 가운데 세포자연사 억제유전자인 Tegt(2.4배), Nfkb1 (2.4배), Veg (1.8배), Ngfr (1.6배) 등이 크게 증가하였으며, 반면에 자연사 촉진유전자인 Bad (-64%), Cstb (-66%)는 감소하였다. 스트레스를 극복하는데 필요한 유전자인 Defb3 (2.7배), Cygb (2.2배), Ahsg (2.18배), Alox5 (2배) 등도 크게 증가하였다. 그리고 세포 성장을 촉진하는 유전자인 Erbb2 (1.84배), Mapk12 (1.8배)도 크게 증가하였다. 따라서 대황의 물추출물은 세포생존에 필요한 유전자를 증가시키고, 세포사를 유도하는 유전자는 감소시킴으로서 저산소층 스트레스에서 신경세포의 사망을 억제하는 것으로 해석된다.

생약복합물의 지방세포형성억제 기전규명을 위한 전사체 분석 (Transcriptome Analyses for the Anti-Adipogenic Mechanism of an Herbal Composition)

  • 이해용;강련화;배성민;채수안;이정주;오동진;박석원;조수현;심예지;윤유식
    • 생명과학회지
    • /
    • 제20권7호
    • /
    • pp.1054-1065
    • /
    • 2010
  • 생약복합물인 SH21B는 황금(Scutellaria baicalensis Georgi), 행인(Prunus armeniaca Maxim), 마황(Ephedra sinica Stapf), 석창포(Acorus gramineus Soland), 포황(Typha orientalis Presl), 원지(Polygala tenuifolia Willd), 하엽(Nelumbo nucifera Gaertner)의 혼합(비율 3:3:3:3:3:2:2)으로 이루어졌다. SH21B는 예로부터 한의학에서 비만의 치료에 사용되어 왔으나 자세한 분자적 메커니즘과 효능에 대한 연구는 이루어지지 않았다. 본 연구진은 선행연구를 통해 SH21B가 지방세포의 분화에서 adipogenesis (지방세포형성)와 관련된 유전자를 조절하여 중성지방의 축적을 억제함을 밝혔다. 본 연구에서는, microarray 기술을 이용하여 adipogenesis의 in vitro 모델인, 3T3-L1 세포에서 SH21B에 의한 지방세포형성 억제의 분자적 기작을 보다 상세하게 연구하고자 하였다. 전지방세포, 분화된 세포 그리고 SH21B에 의해 분화가 억제된 세포의 각각의 유전자 발현을 분석하기 위해 각 시료들에서 total RNA를 분리하여 cDNA를 합성한 후 microarray에 적용시켰다. 그 결과, 각각의 시료들의 비교에서 2배 이상의 유의한 발현 변화를 가지는 2,568개의 유전자를 확보하였다. 이 유전자들에 대해 Hierarchical clustering과 K-means clustering 분석을 진행하였고 서로 다른 양상을 가지는 9개의 군집(cluster)들을 분류하였다. 그 중, SH21B의 첨가에 의해 뚜렷하게 감소(cluster 4, cluster 6 및 cluster 9)하거나 반대로 뚜렷하게 증가(cluster 7와 cluster 8)하는 양상을 보이는 군집들을 따로 선별하여 그 군집들에 포함되어 있는 유전자들을 분석하였다. 선택 된 5개의 군집에는 지방세포형성과 세포증식에 관련된 유전자가 다수 포함되어 있었다. Cluster 4, cluster 6 그리고 cluster 9에는 peroxisome proliferator activated receptor gamma $\gamma$ ($PPAR{\gamma}$), CCAAT/enhancer binding protein $\alpha$ (C/$EBP{\alpha}$), sterol regulatory element binding transcription factor 1 (SREBF1), adiponectin (ADIPOQ), fatty acid synthase (FASN), lipoprotein lipase (LPL) 등의 지방세포형성 유도 및 관련 인자와 B-cell leukemia/lymphoma6 (BCL6), retinoblastoma 1 (RB1), cyclin-dependent kinase inhibitor 2C (CDKN2c), ras homolog gene family, member B (RHOB) 등의 많은 세포증식 억제 유전자가 포함되었다. 이와는 반대로, cluster 7과 cluster 8에는 $\beta$-catenin, cyclin D1 (CCND1), WNT1 inducible signaling pathway protein 2 (WISP2) 등과 같은 지방 세포형성 억제 조절자와 MARCKS-like1 (MARCKSL1), colony stimulating factor 1 (CSF1), discoidin domain receptor family, member 2 (DDR2), leukemia inhibitory factor receptor (LIFR) 등의 세포증식을 유도하는 조절자가 다수 포함되었다. 결론적으로, 이러한 결과들은 SH21B가 지방세포형성과 관련된 조절자 및 세포증식과 관련 된 조절자들의 유전자 발현을 조절하여 지방세포형성을 억제함을 제시한다.

설과 편도 편평 상피세포암에서 P53의 표현양상에 관한 연구 (P53 Expression in Squamous Cell Carcinomas of Tongue and Tonsil)

  • 최건;김만수;최종욱;황순재;유홍균
    • 대한기관식도과학회:학술대회논문집
    • /
    • 대한기관식도과학회 1993년도 제27차 학술대회 초록집
    • /
    • pp.83-83
    • /
    • 1993
  • 정상 p53 유전자는 17번 염색체의 short arm에 위치하는 항암 유전자이나 point mutation에 의한 p53 유전자의 변이는 반감기가 긴 p53단백을 합성하여 핵내에 축적되고 변이형 p53은 암의 발생을 일으키는 것으로 알려졌다. 최근 p53에 대한 단크론성 항체가 개발되어 조직에서 변이형 p53의 검색이 가능하여 여러종류의 종양조직에서 면역세포화학적 방법으로 p53에 대한 표현 양상이 연구되었다. 이에 설 및 편도의 편평상피세포암 조직에서 면역세포화학적 방법으로 p53의 표현 양상을 검색하고 p53의 표현 양상과 임상적, 병리적 소견과의 관계를 알아보고자 29례의 편평상피세포암(설암 19례, 편도암 10례)의 진단시 채취한 생검조직에서 p53에 대한 단크론성 항체를 사용하여 p53의 표현양상과 병리조직학적 분화도, 종양의 원발부위, 원발종양의 크기, 경부 임파전이 여부와의 관계를 비교 분석하여 다음과 같은 결과를 얻었다. 1. p53은 대조군과 실험군의 모든 비종양핵에서는 음성반응을 보였고, 29례의 실험군 중 4례의 종양핵에서 양성반응을 보여 양성율은 13.8%이었다. 2. p53의 양성반응은 종양의 크기가 4cm 이상인 예에서 4cm 미만인 예에서 보다 양성인 예가 많았다(p<0.05). 3. p53의 양성반응은 종양의 병리조직학적 분화도, 종야의 원발부위, 경부 임파전이 여부와 유의한 관계가 없었다.

  • PDF

miR-458b-5p regulates ovarian granulosa cells proliferation through Wnt/β-catenin signaling pathway by targeting catenin beta-1

  • Wang, Wenwen;Teng, Jun;Han, Xu;Zhang, Shen;Zhang, Qin;Tang, Hui
    • Animal Bioscience
    • /
    • 제34권6호
    • /
    • pp.957-966
    • /
    • 2021
  • Objective: Ovarian follicular development, which dependent on the proliferation and differentiation of granulosa cells (GCs), is a complex biological process in which miRNA plays an important role. Our previous study showed that miR-458b-5p is associated with ovarian follicular development in chicken. The detailed function and molecular mechanism of miR-458b-5p in GCs is unclear. Methods: The luciferase reporter assay was used to verify the targeting relationship between miR-458b-5p and catenin beta-1 (CTNNB1), which is an important transcriptional regulatory factor of the Wnt/β-catenin pathway. The cell counting kit-8 (CCK-8) assay, flow cytometry with propidium iodide (PI) and annexin V-fluorescein isothiocyanate (FITC) labeling were applied to explore the effect of miR-458b-5p on proliferation, cell cycle and apoptosis of chicken GCs. Quantitative real-time polymerase chain reaction and Western blot were used to detect the mRNA and protein expression levels. Results: We demonstrated that the expression of miR-458b-5p and CTNNB1 showed the opposite relationship in GCs and theca cells of hierarchical follicles. The luciferase reporter assay confirmed that CTNNB1 is the direct target of miR-458b-5p. Using CCK-8 assay and flow cytometry with PI and Annexin V-FITC labeling, we observed that transfection with the miR-458b-5p mimics significantly reduced proliferation and has no effects on apoptosis of chicken GCs. In addition, miR-458b-5p decreased the mRNA and protein expression of CD44 molecule and matrix metallopeptidase 7, which are the downstream effectors of CTNNB1 in Wnt/β-Catenin pathway and play functional roles in cell proliferation. Conclusion: Taken together, the data indicate that miR-458b-5p regulates ovarian GCs proliferation through Wnt/β-catenin signaling pathway by targeting CTNNB1, suggesting that miR-458b-5p and its target gene CTNNB1 may potentially play a role in chicken ovarian follicular development.

Genetic Variants in Interleukin-2 and Risk of Lymphoma among Children in Korea

  • Song, Nan;Han, So-Hee;Lee, Kyoung-Mu;Choi, Ji-Yeob;Park, Sue-K;Jeon, Su-Jee;Lee, Yun-Hee;Ahn, Hyo-Seop;Shin, Hee-Young;Kang, Hyoung-Jin;Koo, Hong-Hoe;Seo, Jong-Jin;Choi, Ji-Eun;Kang, Dae-Hee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권2호
    • /
    • pp.621-623
    • /
    • 2012
  • To estimate the genetic susceptibility for childhood lymphoma, we conducted an association study for 23 cases and 148 controls. Total 1536 tag single nucleotide polymorphisms (SNPs) were selected in 138 candidate gene regions related to immune responses, apoptosis, the cell cycle, and DNA repair. Twelve SNPs were significantly associated with the risk of lymphoma ($P_{trend}$ <0.05) in six genes ($IL1RN$, $IL2$, $IL12RB1$, $JAK3$, $TNFRSF13B$, and $XRCC3$). The most significant association was seen for $IL2$ variant rs2069762 ($OR_{TG+GG}$ vs. TT=3.43 (1.29-9.11), $P_{trend}$=0.002, min$P$=0.005). These findings suggest that common genetic variants in $IL2$ might play a role in the pathogenesis of childhood lymphoma.

Production of Transgenic Granulosa Cells after Retrovirus Vector Injection into Follicle in Mouse

  • Ju, Jin-Young;Chi, Hee-Jun;Koo, Jung-Jin;Kim, Teoan;Lee, Hoon-Taek;Chung, Kil-Saeng
    • 한국동물번식학회:학술대회논문집
    • /
    • 한국동물번식학회 2001년도 춘계학술발표대회
    • /
    • pp.62-62
    • /
    • 2001
  • Recently, production of transgenic animal by nuclear transfer has been known as a useful method. The production of cloned offspring derived from nuclear transfer depends upon a variety of factors such as species, donor cells type and cell cycle, and source of recipient ova. Therefore, we attempted a different transgenic methods using follicular granulosa cells (GCs). In general, ovulated GCs undergoes lutenization and transformation in vitro which might defective effects on developmental potential. In order to avoid the GCs transformation in vitro culture system, we introduced a direct injection of retrovirus into the follicles and then collected them mechanically from ovaries of 6-8 week-old ICR mice. Retrovirus vector constructed with pLN $\beta$ EGFP was injected into the follicles. The follicles are cultured in $\alpha$ -MEM supplemented with human FSH, LH and ITS in Costar Transwell dish for 4 days. Survival rate of virus injected follicles was 52.1% (12/23) and expression rate of EGPP gene was 33.3% (4/12). In this study, we found GCs performed transgenesis in our culture system. In addition, the GCs in follicle may be developed in vivo like environment rather than in vitro environment. Thus, the use of GCs as donor cells may be useful in the nuclear transfer for cloning of genetic modification. Therefore, these results suggest that follicular GCs can be transfected by viral vector during folliculogenesis in vitro.

  • PDF