DOI QR코드

DOI QR Code

20(S)-ginsenoside Rh2 induces caspase-dependent promyelocytic leukemia-retinoic acid receptor A degradation in NB4 cells via Akt/Bax/caspase9 and TNF-α/caspase8 signaling cascades

  • Zhu, Sirui (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Liu, Xiaoli (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Xue, Mei (College of Basic Medical Sciences, Institute of TCM-related Comorbid Depression, Nanjing University of Chinese Medicine) ;
  • Li, Yu (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Cai, Danhong (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine) ;
  • Wang, Shijun (Shandong co-innovation center of TCM formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine) ;
  • Zhang, Liang (Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine)
  • Received : 2019.09.29
  • Accepted : 2020.05.07
  • Published : 2021.03.01

Abstract

Background: Acute promyelocytic leukemia (APL) is a hematopoietic malignancy driven by promyelocytic leukemia-retinoic acid receptor A (PML-RARA) fusion gene. The therapeutic drugs currently used to treat APL have adverse effects. 20(S)-ginsenoside Rh2 (GRh2) is an anticancer medicine with high effectiveness and low toxicity. However, the underlying anticancer mechanisms of GRh2-induced PML-RARA degradation and apoptosis in human APL cell line (NB4 cells) remain unclear. Methods: Apoptosis-related indicators and PML-RARA expression were determined to investigate the effect of GRh2 on NB4 cells. Z-VAD-FMK, LY294002, and C 87, as inhibitors of caspase, and the phosphatidylinositol 3-kinase (PI3K) and tumor necrosis factor-α (TNF-α) pathways were used to clarify the relationship between GRh2-induced apoptosis and PML-RARA degradation. Results: GRh2 dose- and time-dependently decreased NB4 cell viability. GRh2-induced apoptosis, cell cycle arrest, and caspase3, caspase8, and caspase9 activation in NB4 cells after a 12-hour treatment. GRh2-induced apoptosis in NB4 cells was accompanied by massive production of reactive oxygen species, mitochondrial damage and upregulated Bax/Bcl-2 expression. GRh2 also induced PML/PML-RARA degradation, PML nuclear bodies formation, and activation of the downstream p53 pathway in NB4 cells. Z-VAD-FMK inhibited caspase activation and significantly reversed GRh2-induced apoptosis and PML-RARA degradation. GRh2 also upregulated TNF-α expression and inhibited Akt phosphorylation. LY294002, an inhibitor of the PI3K pathway, enhanced the antitumor effects of GRh2, and C 87, an inhibitor of the TNF-α pathway, reversed NB4 cell viability, and GRh2-mediated apoptosis in a caspase-8-dependent manner. Conclusion: GRh2 induced caspase-dependent PML-RARA degradation and apoptosis in NB4 cells via the Akt/Bax/caspase9 and TNF-α/caspase8 pathways.

Keywords

Acknowledgement

The authors thank the Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica for technical and equipment support for this study.

References

  1. Chen S, Fang Y, Ma L, Liu S, Li X. Realgar-induced apoptosis and differentiation in all-trans retinoic acid (ATRA)-sensitive NB4 and ATRA-resistant MR2 cells. Int J Oncol 2012;40:1089-96. https://doi.org/10.3892/ijo.2011.1276
  2. Nasr R, Lallemand-Breitenbach V, Zhu J, Guillemin MC, de The H. Therapy-induced PML/RARA proteolysis and acute promyelocytic leukemia cure. Clin Cancer Res 2009;15:6321-6. https://doi.org/10.1158/1078-0432.CCR-09-0209
  3. Li K, Wang F, Cao WB, Lv XX, Hua F, Cui B, Yu JJ, Zhang XW, Shang S, Liu SS, et al. TRIB3 promotes APL progression through stabilization of the oncoprotein PML-RARalpha and inhibition of p53-mediated senescence. Cancer Cell 2017;31:697-710. https://doi.org/10.1016/j.ccell.2017.04.006
  4. Watts JM, Tallman MS. Acute promyelocytic leukemia: what is the new standard of care? Blood Rev 2014;28:205-12. https://doi.org/10.1016/j.blre.2014.07.001
  5. Chen SJ, Zhou GB, Zhang XW, Mao JH, de The H, Chen Z. From an old remedy to a magic bullet: molecular mechanisms underlying the therapeutic effects of arsenic in fighting leukemia. Blood 2011;117:6425-37. https://doi.org/10.1182/blood-2010-11-283598
  6. Yoshida H, Kitamura K, Tanaka K, Omura S, Miyazaki T, Hachiya T, Ohno R, Naoe T. Accelerated degradation of PML-retinoic acid receptor alpha (PML-RARA) oncoprotein by all-trans-retinoic acid in acute promyelocytic leukemia: possible role of the proteasome pathway. Cancer Res 1996;56:2945-8.
  7. Isakson P, Bjoras M, Boe SO, Simonsen A. Autophagy contributes to therapy-induced degradation of the PML/RARA oncoprotein. Blood 2010;116:2324-31.
  8. Wang X, Lin Q, Lv F, Liu N, Xu Y, Liu M, Chen Y, Yi Z. LG-362B targets PML-RAR alpha and blocks ATRA resistance of acute promyelocytic leukemia. Leukemia 2016;30:1465-74. https://doi.org/10.1038/leu.2016.50
  9. Tong Q, You H, Chen X, Wang K, Sun W, Pei Y, Zhao X, Yuan M, Zhu H, Luo Z, et al. ZYH005, a novel DNA intercalator, overcomes all-trans retinoic acid resistance in acute promyelocytic leukemia. Nucleic Acids Res 2018;46:3284-97. https://doi.org/10.1093/nar/gky202
  10. Nervi Clara, Ferrara Fabiana F, Fanelli Mirco, Rippo Maria Rita, Tomassini Barbara, Ferrucci Pier Francesco, Ruthardt Martin, Gelmetti Vania, Gambacorti-Passerini Carlo, Diverio Daniela, et al. Caspases mediate retinoic acid-induced degradation of the acute promyelocytic leukemia PML/RARa fusion protein. Blood 1998;92:2244-51.
  11. Lo-Coco F, Avvisati G, Vignetti M, Thiede C, Orlando SM, Iacobelli S, Ferrara F, Fazi P, Cicconi L, Di Bona E, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med 2013;369:111-21. https://doi.org/10.1056/NEJMoa1300874
  12. Burnett AK, Russell NH, Hills RK, Bowen D, Kell J, Knapper S, Morgan YG, Lok J, Grech A, Jones G, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncology 2015;16:1295-305. https://doi.org/10.1016/S1470-2045(15)00193-X
  13. Kamimura T, Miyamoto T, Harada M, Akashi K. Advances in therapies for acute promyelocytic leukemia. Cancer Sci 2011;102:1929-37. https://doi.org/10.1111/j.1349-7006.2011.02045.x
  14. Qian J, Li J, Jia JG, Jin X, Yu DJ, Guo CX, Xie B, Qian LY. Ginsenoside-Rh2 inhibits proliferation and induces apoptosis of human gastric cancer SGC-7901 side population cells. Asian Pac J Cancer Prev 2016;17:1817-21. https://doi.org/10.7314/APJCP.2016.17.4.1817
  15. Chen F, Deng Z, Xiong Z, Zhang B, Yang J, Hu J. A ROS-mediated lysosomal-mitochondrial pathway is induced by ginsenoside Rh2 in hepatoma HepG2 cells. Food Funct 2015;6:3828-37. https://doi.org/10.1039/C5FO00518C
  16. Lee H, Lee S, Jeong D, Kim SJ. Ginsenoside Rh2 epigenetically regulates cell-mediated immune pathway to inhibit proliferation of MCF-7 breast cancer cells. J Ginseng Res 2018;42:455-62. https://doi.org/10.1016/j.jgr.2017.05.003
  17. Chung KS, Cho SH, Shin JS, Kim DH, Choi JH, Choi SY, Rhee YK, Hong HD, Lee KT. Ginsenoside Rh2 induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-beta expression. Carcinogenesis 2013;34:331-40. https://doi.org/10.1093/carcin/bgs341
  18. Guo XX, Li Y, Sun C, Jiang D, Lin YJ, Jin FX, Lee SK, Jin YH. p53-dependent Fas expression is critical for Ginsenoside Rh2 triggered caspase-8 activation in HeLa cells. Protein Cell 2014;5:224-34. https://doi.org/10.1007/s13238-014-0027-2
  19. Wang C, He H, Dou G, Li J, Zhang X, Jiang M, Li P, Huang X, Chen H, Li L, et al. Ginsenoside 20(S)-Rh2 induces apoptosis and differentiation of acute myeloid leukemia cells: role of orphan nuclear receptor Nur77. J Agric Food Chem 2017;65:7687-97. https://doi.org/10.1021/acs.jafc.7b02299
  20. Chen F, Zheng SL, Hu JN, Sun Y, He YM, Peng H, Zhang B, McClements DJ, Deng ZY. Octyl ester of ginsenoside Rh2 induces apoptosis and G1 cell cycle arrest in human HepG2 cells by activating the extrinsic apoptotic pathway and modulating the akt/p38 MAPK signaling pathway. J Agric Food Chem 2016;64:7520-9. https://doi.org/10.1021/acs.jafc.6b03519
  21. Guo XX, Guo Q, Li Y, Lee SK, Wei XN, Jin YH. Ginsenoside Rh2 induces human hepatoma cell apoptosisvia bax/bak triggered cytochrome c release and caspase-9/caspase-8 activation. Int J Mol Sci 2012;13:15523-35. https://doi.org/10.3390/ijms131215523
  22. Aoki M, Fujishita T. Oncogenic roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol 2017;407:153-89.
  23. Xia T, Zhang J, Zhou C, Li Y, Duan W, Zhang B, Wang M, Fang J. 20(S)-Ginsenoside Rh2 displays efficacy against T-cell acute lymphoblastic leukemia through the PI3K/Akt/mTOR signal pathway. Journal of Ginseng Research 2019.
  24. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J, Libra M, Stivala F, Milella M, Tafuri A, et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008;22:686-707. https://doi.org/10.1038/leu.2008.26
  25. Li KF, Kang CM, Yin XF, Li HX, Chen ZY, Li Y, Zhang Q, Qiu YR. Ginsenoside Rh2 inhibits human A172 glioma cell proliferation and induces cell cycle arrest status via modulating Akt signaling pathway. Mol Med Rep 2018;17:3062-8.
  26. Huang J, Peng K, Wang L, Wen B, Zhou L, Luo T, Su M, Li J, Luo Z. Ginsenoside Rh2 inhibits proliferation and induces apoptosis in human leukemia cells via TNF-alpha signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2016;48:750-5. https://doi.org/10.1093/abbs/gmw049
  27. Yuan J, Deng Y, Zhang Y, Gan X, Gao S, Hu H, Hu S, Hu J, Liu H, Li L, et al. Bmp4 inhibits goose granulosa cell apoptosis via PI3K/AKT/caspase-9 signaling pathway. Anim Reprod Sci 2019;200:86-95. https://doi.org/10.1016/j.anireprosci.2018.11.014
  28. Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N, Barbany G, Cazzaniga G, Cayuela JM, Cave H, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-A Europe against Cancer Program. Leukemia 2003;17:2318-57. https://doi.org/10.1038/sj.leu.2403135
  29. Sun M, Ye Y, Xiao L, Duan XY, Zhang YM. Anticancer effects of ginsenoside Rg3 (review). Int J Mol Med 2017;39:507-18. https://doi.org/10.3892/ijmm.2017.2857
  30. Zhang X, Zhang SL, Sun QT, Jiao WJ, Yan Y, Zhang XW. Compound K induces endoplasmic reticulum stress and apoptosis in human liver cancer cells by regulating STAT3. Molecules 2018;23:1482. https://doi.org/10.3390/molecules23061482
  31. Gianni M. In acute promyelocytic leukemia NB4 cells, the synthetic retinoid CD437 induces contemporaneously apoptosis, a caspase-3-mediated degradation of PML/RARα protein and the PML retargeting on PML-nuclear bodies. Leukemia 1999;13:739-49. https://doi.org/10.1038/sj.leu.2401419
  32. Simonyan L, Renault TT, Novais MJ, Sousa MJ, Corte-Real M, Camougrand N, Gonzalez C, Manon S. Regulation of Bax/mitochondria interaction by AKT. FEBS Lett 2016;590:13-21. https://doi.org/10.1002/1873-3468.12030
  33. Sun S, Zhang C, Gao J, Qin Q, Zhang Y, Zhu H, Yang X, Yang D, Yan H. Benzoquinone induces ROS-dependent mitochondria-mediated apoptosis in HL-60 cells. Toxicol Ind Health 2018;34:270-81. https://doi.org/10.1177/0748233717750983
  34. Green DR, Kroemer G. The pathophysiology of mitochondrial cell death. Science 2004;305:626-9. https://doi.org/10.1126/science.1099320
  35. Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 1999;399:483-7. https://doi.org/10.1038/20959
  36. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science 1998;281:1305-8. https://doi.org/10.1126/science.281.5381.1305

Cited by

  1. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression vol.6, pp.1, 2021, https://doi.org/10.1038/s41392-021-00788-w