• Title/Summary/Keyword: cell apoptosis

Search Result 4,253, Processing Time 0.038 seconds

Protective effect of Gabjubaekmok (Diospyros kaki) extract against amyloid beta (Aβ)-induced cognitive impairment in a mouse model (아밀로이드 베타(amyloid beta)로 유도된 인지장애 마우스 모델에서 갑주백목(Diospyros kaki) 추출물의 인지기능 및 뇌 신경세포 보호 효과)

  • Yoo, Seul Ki;Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Han, Hye Ju;Park, Hyo Won;Kim, Chul-Woo;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.379-392
    • /
    • 2019
  • The current study investigated the effect of Gabjubaekmok (Diospyros kaki) ethanolic extract (GEE) on $H_2O_2$-induced human neuroblastoma MC-IXC cells and amyloid beta $(A{\beta})_{1-42}$-induced ICR (Institute of Cancer Research) mice. GEE showed significant antioxidant activity that was evaluated based on ABTS, DPPH scavenging activity, and inhibition of malondialdehyde (MDA) and acetylcholinesterase activity. Further, GEE inhibited ROS production and increased cell viability in $H_2O_2$-induced MC-IXC cells. Administration of GEE ameliorated the cognitive dysfunction on $A{\beta}$-induced ICR mice as evaluated using Y-maze, passive avoidance, and Morris water maze tests. Results of ex vivo test using brain tissues showed that, GEE protected the cholinergic system and mitochondrial functions by increasing the levels of antioxidants such as ROS, mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) against $A{\beta}$-induced cognitive dysfunction. Moreover, GEE decreasd the expression levels of apoptosis-related proteins such as $TNF-{\alpha}$, p-JNK, p-tau, BAX and caspase 3. While, expression levels of p-Akt and $p-GSK3{\beta}$ increased than $A{\beta}$ group. Finally, gallic acid was identified as the main compound of GEE using high performance liquid chromatography.

Comparison of the Cytoprotective Effects of Several Natural and Synthetic Compounds against Oxidative Stress in Human Retinal Pigment Epithelial Cells (인간 망막 색소상피 세포에서 산화적 스트레스에 대한 천연 및 합성 화합물들의 세포 보호 효과 비교)

  • Kim, Da Hye;Kim, Jeong-Hwan;Park, Seh-Kwang;Jeong, Ji-Won;Kim, Mi-Young;Nam, Soo-Wan;Lee, Hyesook;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.126-136
    • /
    • 2021
  • Oxidative stress causes injury to and degeneration of retinal pigment epithelial (RPE) cells. It is involved in several retinal disorders and leads to vision loss. In the present study, we investigated the effect of 14 kinds of natural compounds and two kinds of synthetic compounds on oxidative stress-induced cellular damage in human PRE cell lines (ARPE-19). From among them, we selected five kinds of compounds, including auranofin, FK-509, hemistepsin A, honokiol, and spermidine, which have inhibitory effects against hydrogen peroxide (H2O2)-mediated cytotoxicity. In addition, we found that four kinds of compounds (excluding auranofin) have protective effects on H2O2-induced mitochondrial dysfunction. Furthermore, the expression of phosphorylation of histone H2AX, a sensitive marker of DNA damage, was markedly up-regulated by H2O2, whereas it was notably down-regulated by FK-506, honokiol, and spermidine treatment. Meanwhile, five kinds of candidate compounds had no effect on H2O2-induced intracellular reactive oxygen species (ROS) levels, suggesting that the five candidate compounds have protective effects on oxidative stress-induced cellular damage through the ROS-independent pathway. Taken together, according to the results of H2O2-mediated cellular damage―such as cytotoxicity, apoptosis, mitochondrial dysfunction, and DNA damage―spermidine and FK-506 are the natural and synthetic compounds with the most protective effects against oxidative stress in RPE. Although further studies on the identification of the mechanism responsible are required, the results of the present study suggest the possibility of using spermidine and FK-506 to suppress the risk of retinal disorders.

Apoptotic Effect of Proso Millet Grains on Human Breast Cancer MDA-MB-231Cells Is Exerted by Activation of BAK and BAX, and Mitochondrial Damage-mediated Caspase Cascade Activation (기장 종자 유래 추출물의 인간 유방암 MDA-MB-231 세포에 대한 세포독성에 관련된 미토콘드리아 손상-의존적 아폽토시스 유도 효과)

  • Do Youn Jun;Cho Rong Han;Young Ho Kim
    • Journal of Life Science
    • /
    • v.33 no.1
    • /
    • pp.15-24
    • /
    • 2023
  • To examine the antitumor effect of proso millet grains, whether proso millet grains exert apoptotic activity against human cancer cells was investigated. When the cytotoxicity of 80% ethanol (EtOH) extract of proso millet grains was tested against various cancer cells using MTT assay, more potent cytotoxicity was observed against human breast cancer MDA-MB-231 cells than against other cancer cells. When the EtOH extract was evaporated to dryness, dissolved in water, and then further fractionated by sequential extraction using four organic solvents (n-hexane, methylene chloride, ethyl acetate, and n-butanol), the BuOH fraction exhibited the highest cytotoxicity against MDA-MB-231 cells. Along with the cytotoxicity, TUNEL-positive apoptotic nucleosomal DNA fragmentation and several apoptotic responses including BAK/BAX activation, mitochondria membrane potential (Δψm) loss, mitochondrial cytochrome c release into the cytosol, activation of caspase-8/-9/-3, and degradation of poly (ADP-ribose) polymerase (PARP) were detected. However, human normal mammary epithelial MCF-10A cells exhibited a significantly lesser extent of sensitivity compared to malignant MDA-MB-231 cells. Irrespective of Fas-associated death domain (FADD)-deficiency or caspase-8-deficiency, human T acute lymphoblastic leukemia Jurkat cells displayed similar sensitivities to the cytotoxicity of BuOH fraction, excluding an involvement of extrinsic apoptotic mechanism in the apoptosis induction. These results demonstrate that the cytotoxicity of BuOH fraction from proso millet grains against human breast cancer MDA-MB-231 cells is attributable to intrinsic apoptotic cell death resulting from BAK/BAX activation, and subsequent mediation of mitochondrial damage-dependent activation of caspase cascade.

Analysis of the Amount of Telomeric DNA and Telomerase Activity on Preimplantation Mouse Embryoic Cells (마우스 수정란의 초기 배 발생단계별 Telomeric DNA의 양적 분석과 Telomerase 활성도 분석)

  • Kang M. Y.;Han M. S.;Lee S. C.;Kim J. H.;Sohn S. H.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Telomeres consisting of (TTAGGG)n tandem repeat DNA sequences and associated proteins are essential for chromosome stability and related with cell senescence, apoptosis and cancer. The telomerase is a ribonucleoprotein which act as a template for the synthesis of telomeric DNA. This study was carried out to identify the distribution of telomeres on mouse chromosomes and also to analyze the amount of telomeres and telomerase activity of mouse embryos at early embryonic stages. Germ cells and early embryos from 1 cell to blastocyst stage were analyzed. The amount of telomeres was analyzed by quantitative fluorescence in situ hybridization technique(Q-FISH) using a human telomeric DNA probe, and telomerase activity was measured by telomeric repeat amplification protocol assay(TRAP). In results, the telomeres on mouse chromosomes were distributed at the ends of all autosomes and sex chromosomes. Although the quantity of telomeres varied among chromosomes, most of chromosomes had higher amount in q-arm telomeres than in p-arm telomeres. The results of Q-FISH indicated that the relative amount of telomeres of mouse embryos in each embryonic stage was approximately the same except the higher amount in blastocysts. Using TRAP assay on mouse embryos, telomerase activity was detected in all preimplantation stages from mature oocytes to blastocysts. Especially the telomerase activity was significantly increased at the morula and blastocyst stage. In conclusion, there may be a close association between the amount of telomeres and telomerase activity in early embryonic stages, and analysis of telomere quantity and telomerase activity on early development will be helpful for the investigation of embryogenesis and embryonic cell differentiation in mice.

Effects of Black Soybean and Fermented Black Soybean Extracts on Proliferation of Human Follicle Dermal Papilla Cells (검은콩과 발효검은콩 추출물이 인간 모유두 세포 성장에 미치는 효과)

  • Choi, Ji-Hye;Lee, Myoungsook;Kim, Hyun Jung;Kwon, Jung Il;Lee, Yunkyoung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.6
    • /
    • pp.671-680
    • /
    • 2017
  • This study was conducted to examine the effects and potential mechanisms of action of black soybean extracts and fermented black soybean extracts by Lactobacillus rhamnosus GG (LGG) and Bifidobacterium animals subsp. lactis BB-12 (BB-12) on proliferation of human follicle dermal papilla cells (HFDPC). We examined changes in pH, total polyphenol, sugar, and reducing sugar contents according to fermentation period of black soybean extracts. Assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was performed to determine cell toxicity levels of the four black soybean extracts [black soybean water extract (BWE), black soybean ethanol extract (BEE), fermented BWE (F-BEW), and fermented BEE (F-BEE)]. Changes in mRNA expression levels of hair growth promoting factors and hair growth inhibiting factors by the four black soybean extracts were measured by real-time PCR. In addition, phosphorylation levels of mitogen-activated protein kinase family proteins were measured by western blot analysis. As a result, fermentation of black soybeans significantly reduced pH, total polyphenols, and sugar/reducing sugar contents. All four black soybean extracts showed no cellular toxicity in HFDPC. In fact, BEE significantly enhanced cell viability of HFDPC at $100{\mu}g/mL$ compared to control. BWE, BEE, and BWE-F significantly increased mRNA expression of vascular endothelial growth factor, and all four extracts increased mRNA expression of fibroblast growth factor. However, mRNA expression levels of apoptosis-related genes were not affected by black soybean extracts in HFDPC. Furthermore, BWE, BEE, and BWE-F significantly increased phosphorylation levels of extracellular signal-regulated kinase compared to control. Taken together, we demonstrated that black soybean extracts enhanced proliferation of human follicle dermal papilla cells partially via activation of hair growth promoting factors, although no particular significant effects on proliferation were observed by fermentation of black soybeans.

Induction of Autophagy by Low Dose of Cisplatin in H460 Lung Cancer Cells (폐암세포주에서 저용량 시스플라틴에 의해 유도된 자가포식)

  • Shin, Jeong-Hyun;Jang, Hye-Yeon;Chung, Jin-Soo;Cho, Kyung-Hwa;Hwang, Ki-Eun;Kim, So-Young;Kim, Hui-Jung;Lee, Sam-Youn;Lee, Mi-Kung;Park, Soon-Ah;Moon, Sun-Rock;Lee, Kang-Kyu;Jo, Hyang-Jeong;Yang, Sei-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.1
    • /
    • pp.16-23
    • /
    • 2010
  • Background: Most lung cancer patients receive systemic chemotherapy at an advanced stage disease. Cisplatin-based chemotherapy is the main regimen for treating advanced lung cancer. Recently, autophagy has become an important mechanism of cellular adaptation under starvation or cell oxidative stress. The purpose of this study was to determine whether or not autophagy can occurred in cisplatin-treated lung cancer cells. Methods: H460 cells were incubated with RPMI 1640 and treated in $5{\mu}M$ or $20{\mu}M$ cisplatin concentrations at specific time intervals. Cells surviving cisplatin treatment were measured and compared using an MTT cell viability assay to cells that underwent apoptosis with autophagy by nuclear staining, apoptotic or autophagic related proteins, and autophagic vacuoles. The development of acidic vascular organelles was using acridine orange staining and fluorescent expression of GFP-LC3 protein in its transfected cells was observed to evaluate autophagy. Results: Lung cancer cells treated with $5{\mu}M$ cisplatin-treated were less sensitive to cell death than $20{\mu}M$ cisplatin-treated cells in a time-dependent manner. Nuclear fragmentation at $5{\mu}M$ was not detected, even though it was discovered at $20{\mu}M$. Poly (ADP-ribose) polymerase cleavages were not detected in $5{\mu}M$ within 24 hours. Massive vacuolization in the cytoplasm of $5{\mu}M$ treated cells were observed. Acridine orange stain-positive cells was increased according in time-dependence manner. The autophagosome-incorporated LC3 II protein expression was increased in $5{\mu}M$ treated cells, but was not detected in $20{\mu}M$ treated cells. The expression of GFP-LC3 were increased in $5{\mu}M$ treated cells in a time-dependent manner. Conclusion: The induction of autophagy occurred in $5{\mu}M$ dose of cisplatin-treated lung cancer cells.

Protective Effects of New Herbal Composition (MH-30) against Radiation Injuries in Hematopoietic and Self-Renewal Tissues (생약조성물(MH-30)의 면역조혈계 및 재생조직 방사선 손상에 대한 방호 효과)

  • Jung, Uhee;Park, Hae-Ran;Lee, Ho-Yong;Baek, Ga-Young;Jo, Sung-Kee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.948-957
    • /
    • 2016
  • We previously developed an herbal composition (HemoHIM) based on the water extracts of Angelica gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix to protect and recover hematopoietic and intestinal tissues against radiation injuries. In this study, to develop a composition with improved activities based on enhanced fat-soluble polyphenol contents, we prepared a new herbal composition, MH-30, from the above three herbs by 30% ethanol extraction and hot water extraction. HPLC analysis of the ethanol fractions of MH-30 and HemoHIM revealed that MH-30 had higher contents of many fat-soluble polyphenol compounds than HemoHIM (8.7-fold increase for decursin), whereas contents of water-soluble polyphenol compounds showed little differences between the two compositions. Then, we evaluated MH-30 and HemoHIM for their in vitro antioxidant and immune cell-stimulating activities as well as in vivo protective effects against radiation injuries in hematopoietic and self-renewal tissues. In antioxidant activity assays, MH-30 showed higher hydroxyl radical scavenging activity than HemoHIM (1.4- to 1.9-fold for compositions and 2.3- to 4.5-fold for ethanol fractions). On the other hand, MH-30 and HemoHIM exhibited similar immune cell-stimulating activities as measured by in vitro lymphocyte proliferation. MH-30 increased endogenous spleen colony formation, decreased bone marrow cell apoptosis, and enhanced survival of intestinal crypts in irradiated mice, demonstrating effective protection of MH-30 against radiation-induced injuries in hematopoietic and self-renewal tissues. The 30-day survival rate of lethally irradiated mice, a comprehensive index for radioprotective efficacy, was also elevated by MH-30. Noticeably, MH-30 showed higher protective effects than HemoHIM in all mouse experiments. These results demonstrate that MH-30 can protect hematopoietic and self-renewal tissues against radiation injuries more effectively than HemoHIM. Therefore, MH-30 can be a good candidate to reduce radiation injuries in hematopoietic and self-renewal tissues incurred by radiation accidents or cancer radiation therapy.

Neuroprotective Effects of Minocycline in Rat Brain Cortical Cell Culture Induced by Hypoxia (저산소 상태로 유도된 백서 뇌세포 배양에서 Minocycline의 뇌보호 효과)

  • Ha, Kyung A;Yang, Bum Seok;Kim, Jin Kyung;Kim, Hong Tae;Ha, Sung Jin;Lee, Jong Won;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.11
    • /
    • pp.1101-1106
    • /
    • 2003
  • Purpose : In vivo, minocycline appears to be neuroprotective. Thus, the neuroprotective effects of minocycline were studied in a rat brain cortical cell culture induced by hypoxia. Methods : Cultured cells from the brains of Sprague-Dawley rats were divided into two sets of groups : normoxia groups treated with 5% $CO_2$ and hypoxia groups treated with 1% $CO_2$. After several days of incubation, the control groups were not treated with minocycline, while the sample groups were treated with either 1 or $10{\mu}g/mL$ of minocycline. The damaged cells were observed under a microscope, while apoptosis was detected using a TUNEL assay control-stained with DAPI. Results : Among the normoxia groups, the control and sample groups treated with 1 and $10{\mu}g/mL$ of minocycline were all statistically significantly different from each other. Meanwhile, among the hypoxia groups, although the control was significantly different from the sample groups, there was no statistically significant difference between the sample groups. When comparing the normoxia and hypoxia groups, there was a statistically significant difference between the control groups and sample groups treated with $1{\mu}g/mL$ of minocycline, yet no significant difference between the sample groups treated with $10{\mu}g/mL$ of minocycline. Conclusion : Minocycline was found to be neuroprotective in normoxia and hypoxia induced rat brain cortical cell cultures.

Immunocytochemistry of Metallothionein Expression in Developing Rat Liver (발생중인 흰쥐 간에서의 Metallothionein 발현에 관한 면역세포화학적 연구)

  • Oh, Seung-Han;Ahn, Young-Mo;Shin, Kil-Sang;Kim, Wan-Jong
    • Applied Microscopy
    • /
    • v.34 no.3
    • /
    • pp.171-178
    • /
    • 2004
  • Metallothionein (MT) is a family of ubiquitous, low molecular weight (6-7 kDa), cysteine-rich protein with a high affinity to metal ions and has no aromatic amino acids and histidine. Some of the known functions of MT include detoxification of heavy metals and alkylating agents and neutralization of free radicals. Also, this protein may affect a number of cellular processes including gene expression, apoptosis, proliferation and differentiation. But, its actual functions are still not clear. The present study was undertaken to examine immunocytochemically the localization of MT in developing rat liver. On the day 11 of gestation, the fetal rat liver has already been formed and contained numerous oval cells with high nuclear cytoplasmic ratio, which were the progenitors of hepatic parenchymal cells, but no reaction products of MT were detected at this time. And then, positive reactions against MT started to appear predominantly in the parenchymal cells of liver from the 13th day after gestation. Reaction products, immunogold particles or brown coloration, were localized at both the nucleus and the cytoplasm of the parenchymal cells, except mitochondria. The intensity of this reaction gradually increased, and exhibited the strongest at birth. The intensity of MT staining and immunogold labelling diminished with growth, and by the 15th day after birth weak positive reaction was observed in the cells. In brief, positive reactions for MT were observed in the oval cells and the parenchymal cells during fetal stage, meanwhile they were present only in the parenchymal cells after birth. The present results suggest that MT possibly involves parechymal cell proliferation and differentiation through the storage or the supply of various metal ions in the developing rat liver.

Microarray Analysis of Gene Expression by Rhei Rhizoma Water Extracts in a Hypoxia Model of Cultured Neurons (배양신경세포의 저산소증모델에서 대황 물추출물에 의한 유전자 표현 변화의 microarray 분석)

  • Lee, Hyun-Sook;Song, Jin-Young;Moon, Il-Soo
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.21-33
    • /
    • 2009
  • In this study, we investigated the effect of Rhei Rhizoma (RR; 大黃) water extract on gene expression in a hypoxia model of cultured rat hippocampal neurons. RR water extract $(2.5{\mu}g/ml)$ was added to the culture media on day 10 in vitro (DIV10), and a hypoxic shock (2% $O_2$/5% $CO_2$, $37^{\circ}C$, 3 h) was given on DIV13. After maintaining the cultures in normoxia for 24 hr, total RNA was isolated and used for microarray analysis. The MA-plot indicated that most genes were up- or downregulated within 2-fold. There were more downregulated genes (725 ea) than upregulated ones (472 ea) when larger than Global M value 0.2 (i.e., >15% increase) or smaller than Global M value -0.2 (i.e., >15% decrease) were considered. Antiapoptosis genes such as Tegt (2.4-fold), Nfkb1 (2.4-fold) Veg (1.8-fold), Ngfr (1.6-fold) were upregulated, while pro-apoptosis genes such as Bad (-64%), Cstb (-66%) were downregulated. Genes for combating environmental stress (stress response genes) such as Defb3 (2.7-fold), Cygb (2.2-fold), Ahsg (2.18-fold), Alox5 (2-fold) were upregulated. Genes for cell proliferation (cell cycle-related genes) such as Erbb2 (1.84-fold), Mapk12 gene (1.8-fold) was upregulated. Therefore, RR water extracts upregulate many pro-survival genes while downregulating many pro-death genes. It is interpreted that these genes, in combination with other regulated genes, can promote neuronal survival in a stress such as hypoxia.