DOI QR코드

DOI QR Code

Protective Effects of New Herbal Composition (MH-30) against Radiation Injuries in Hematopoietic and Self-Renewal Tissues

생약조성물(MH-30)의 면역조혈계 및 재생조직 방사선 손상에 대한 방호 효과

  • Jung, Uhee (Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute) ;
  • Park, Hae-Ran (Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute) ;
  • Lee, Ho-Yong (Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute) ;
  • Baek, Ga-Young (Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute) ;
  • Jo, Sung-Kee (Radiation Biotechnology Research Division, Korea Atomic Energy Research Institute)
  • 정우희 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 박혜란 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 이호용 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 백가영 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 조성기 (한국원자력연구원 첨단방사선연구소 생명공학연구부)
  • Received : 2016.05.16
  • Accepted : 2016.06.16
  • Published : 2016.07.31

Abstract

We previously developed an herbal composition (HemoHIM) based on the water extracts of Angelica gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix to protect and recover hematopoietic and intestinal tissues against radiation injuries. In this study, to develop a composition with improved activities based on enhanced fat-soluble polyphenol contents, we prepared a new herbal composition, MH-30, from the above three herbs by 30% ethanol extraction and hot water extraction. HPLC analysis of the ethanol fractions of MH-30 and HemoHIM revealed that MH-30 had higher contents of many fat-soluble polyphenol compounds than HemoHIM (8.7-fold increase for decursin), whereas contents of water-soluble polyphenol compounds showed little differences between the two compositions. Then, we evaluated MH-30 and HemoHIM for their in vitro antioxidant and immune cell-stimulating activities as well as in vivo protective effects against radiation injuries in hematopoietic and self-renewal tissues. In antioxidant activity assays, MH-30 showed higher hydroxyl radical scavenging activity than HemoHIM (1.4- to 1.9-fold for compositions and 2.3- to 4.5-fold for ethanol fractions). On the other hand, MH-30 and HemoHIM exhibited similar immune cell-stimulating activities as measured by in vitro lymphocyte proliferation. MH-30 increased endogenous spleen colony formation, decreased bone marrow cell apoptosis, and enhanced survival of intestinal crypts in irradiated mice, demonstrating effective protection of MH-30 against radiation-induced injuries in hematopoietic and self-renewal tissues. The 30-day survival rate of lethally irradiated mice, a comprehensive index for radioprotective efficacy, was also elevated by MH-30. Noticeably, MH-30 showed higher protective effects than HemoHIM in all mouse experiments. These results demonstrate that MH-30 can protect hematopoietic and self-renewal tissues against radiation injuries more effectively than HemoHIM. Therefore, MH-30 can be a good candidate to reduce radiation injuries in hematopoietic and self-renewal tissues incurred by radiation accidents or cancer radiation therapy.

본 연구팀에서는 방사선에 의한 면역조혈계 및 위장관계 손상에 대한 방호를 위하여 당귀, 천궁, 작약 혼합물의 열수 추출물로부터 그 다당체 함량을 강화한 생약조성물 Hemo HIM을 개발한 바 있다. 본 연구에서는 열수 추출물에 기반을 두어 제조된 HemoHIM에 비하여 지용성 폴리페놀 성분을 강화함으로써 더 뛰어난 생리활성을 갖는 생약조성물을 개발하고자 30% 에탄올 추출과 열수 추출을 함께 시행하여 얻은 추출물을 기반으로 생약조성물 MH-30을 제조하였다. MH-30과 HemoHIM의 에탄올 분획 내의 성분을 HPLC로 비교 분석한 결과 수용성 성분에는 큰 차이가 없었으나 여러가지 지용성 성분이 MH-30에서 크게 증가하는 것을 확인하였으며, 특히 decursin의 함량은 8.7배로 크게 증가하였다. 다음으로 MH-30의 시험관 내 항산화 및 면역세포 활성화 효과와 방사선 조사 마우스에서 면역조혈계 및 재생조직의 방호 효과를 HemoHIM과 비교하여 관찰하였다. 항산화 활성을 비교하기 위한 시험관 내 hydroxyl radical 및 superoxide anion 소거 활성 평가에서 MH-30이 HemoHIM보다 높은 항산화 활성을 보였다. 림프구 증식능을 이용한 시험관 내 면역세포 활성화 시험에서는 MH-30과 Hemo HIM은 거의 비슷한 활성을 나타내었다. 방사선 조사 마우스에서 MH-30은 내재성 비장 조혈세포 집락수를 증가시키고 골수조직 내 세포사멸을 줄였으며, 위장관 재생조직인 소장움의 생존율을 증가시키는 등 방사선에 의한 면역조혈계와 재생조직 손상을 방호하는 효과를 보여주었다. 또한, 종합적인 방사선 방호 효과를 평가하는 지표인 방사선 조사 마우스의 30일 생존율도 MH-30 투여로 유의하게 증가함을 확인하였다. 특히 상기한 모든 마우스 실험에서 MH-30은 Hemo HIM보다 더 뛰어난 방호 효과가 있음을 관찰할 수 있었다. 이상의 결과들은 새롭게 개발한 생약조성물 MH-30이 면역 조혈계와 재생조직의 방사선 손상을 줄여주는 효과가 있으며 기존에 개발된 HemoHIM에 비해 더 뛰어난 활성을 갖고 있음을 보여주었다. 따라서 MH-30은 방사선 사고 또는 암환자의 방사선치료 시 발생할 수 있는 면역조혈계 및 재생조직의 손상을 경감시킬 수 있는 방사선 방호 물질로서 유용하게 활용될 수 있을 것으로 생각한다.

Keywords

References

  1. Singh VK, Romaine PL, Seed TM. 2015. Medical Countermeasures for radiation exposure and related injuries: Characterization of medicines, FDA-approval status and inclusion into the strategic national stockpile. Health Phys 108: 607-630. https://doi.org/10.1097/HP.0000000000000279
  2. Halliwell B, Gutteridge JM. 1999. Free radicals in biology and medicine. 3rd ed. Oxford University Press, New York, NY, USA. p 604-607.
  3. Hendry JH, Roberts SA, Potten CS. 1992. The clonogen content of murine intestinal crypts: dependence on radiation dose used in its determination. Radiat Res 132: 115-119. https://doi.org/10.2307/3578342
  4. Schwartz GN, Neta R, Vigneulle RM, Patchen ML, MacVittie TJ. 1988. Recovery of hematopoietic colony-forming cells in irradiated mice pretreated with interleukin 1 (IL-1). Exp Hematol 16: 752-757.
  5. Travis EL, Fang MZ, Basic I. 1988. Protection of mouse bone marrow by WR-2721 after fractionated irradiation. Int J Radiat Oncol Biol Phys 15: 377-382. https://doi.org/10.1016/S0360-3016(98)90019-0
  6. Milas L, Hunter N, Reid BO, Thames HD Jr. 1982. Protective effects of S-2-(3-aminopropylamino)ethylphosphorothioic acid against radiation damage of normal tissues and a fibrosarcoma in mice. Cancer Res 42: 1888-1987.
  7. Milas L, Murray D, Brock WA, Meyn RE. 1988. Radioprotectors in tumor radiotherapy: factors and settings determining therapeutic ratio. Pharmacol Ther 39: 179-187. https://doi.org/10.1016/0163-7258(88)90059-9
  8. Neta R, Douches S, Oppenheim JJ. 1986. Interleukin 1 is a radioprotector. J Immunol 136: 2483-2485.
  9. Neta R. 1988. Role of cytokines in radioprotection. Pharmacol Ther 39: 261-266. https://doi.org/10.1016/0163-7258(88)90070-8
  10. MacVittie TJ, Monroy RL, Patchen ML, Souza LM. 1990. Therapeutic use of recombinant human G-CSF (rhG-CSF) in a canine model of sublethal and lethal whole-body irradiation. Int J Radiat Biol 57: 723-736. https://doi.org/10.1080/09553009014550891
  11. Satoh S, Suzuki A, Okamura H, Nishimura T. 1982. Case of malignant melanoma of the external genitalia responding satisfactorily to a combination of local injection of OK-432 and chemotherapy. Gan To Kagaku Ryoho 9: 140-145.
  12. Bogo V, Jacobs AJ, Weiss JF. 1985. Behavioral toxicity and efficacy of WR-2721 as a radioprotectant. Radiat Res 104: 182-190. https://doi.org/10.2307/3576614
  13. Rades D, Fehlauer F, Bajrovic A, Mahlmann B, Richter E, Alberti W. 2004. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother Oncol 70: 261-264. https://doi.org/10.1016/j.radonc.2003.10.005
  14. Miyanomae T, Frindel E. 1988. Radioprotection of hemopoiesis conferred by Acanthopanax senticosus Harms (Shigoka) administered before or after irradiation. Exp Hematol 16: 801-806.
  15. Hsu HY, Lian SL, Lin CC. 1990. Radioprotective effect of Ganoderma lucidum (Leyss. ex. Fr.) Karst after X-ray irradiation in mice. Am J Chin Med 18: 61-69. https://doi.org/10.1142/S0192415X90000095
  16. Mei QB, Tao TY, Cui B. 1991. Advances in the pharmacological studies of radix Angelica sinensis (Oliv) Diels (Chinese Danggui). Chin Med J (Engl) 104: 776-781.
  17. Ohta S, Sakurai N, Sato Y, Inoue T, Shinoda M. 1990. Studies on chemical protectors against radiation. XXX. Radioprotective substances of Cnidii rhizoma. Yakugaku Zasshi 110: 746-754. https://doi.org/10.1248/yakushi1947.110.10_746
  18. Zneg XL, Li XA, Zhang BY. 1992. Immunological and hematopoietic effect of Codonopsis pilosula on cancer patients during radiotherapy. Zhongguo Zhong Xi Yi Jie He Za Zhi 12: 607-608.
  19. Quan HX, Li HS. 1994. Effects of radix Astragali on hemopoiesis in irradiated mice. Zhongguo Zhong Yao Za Zhi 19: 741-743.
  20. Kim SH, Lee SE, Oh H, Kim SR, Yee ST, Yu YB, Byun MW, Jo SK. 2002. The radioprotective effects of bu-zhongyi-qi-tang: a prescription of traditional Chinese medicine. Am J Chin Med 30: 127-137. https://doi.org/10.1142/S0192415X02000144
  21. Hisha H, Yamada H, Sakurai MH, Kiyohara H, Li Y, Yu C, Takemoto N, Kawamura H, Yamaura K, Shinohara S, Komatsu Y, Aburada M, Ikehara S. 1997. Isolation and identification of hematopoietic stem cell-stimulating sub stances from Kampo (Japanese herbal) medicine, Juzen-taiho-to. Blood 90: 1022-1030.
  22. Hsu HY, Hau DM, Lin CC. 1993. Effects of kuei-pi-tang on cellular immunocompetence of gamma-irradiated mice. Am J Chin Med 21: 151-158. https://doi.org/10.1142/S0192415X93000182
  23. Hsu HY, Ho YH, Lin CC. 1996. Protection of mouse bone marrow by Si-WU-Tang against whole body irradiation. J Ethnopharmacol 52: 113-117. https://doi.org/10.1016/0378-8741(96)01400-6
  24. Lee SE, Oh H, Yang JA, Jo SK, Byun MW, Yee ST, Kim SH. 1999. Radioprotective effects of two traditional Chinese medicine prescriptions: si-wu-tang and si-jun-zi-tang. Am J Chin Med 27: 387-396. https://doi.org/10.1142/S0192415X99000446
  25. Park HR, Kim SH, Yee ST, Byun MW, Jo SK. 2005. The effects of a herb mixture (HIM-I) on the protection of the hematopoietic-immune system and self-renewal tissues against radiation damage. J Korean Soc Food Sci Nutr 34: 605-612. https://doi.org/10.3746/jkfn.2005.34.5.605
  26. Jo SK, Park HR, Jung U, Oh H, Kim SH, Yee ST. 2005. Protective effect of a herbal preparation (HemoHIM) on the self-renewal tissues and immune system against ${\gamma}$-irradiation. J Korean Soc Food Sci Nutr 34: 805-813. https://doi.org/10.3746/jkfn.2005.34.6.805
  27. Kim SH, Lee HJ, Kim JS, Moon C, Kim JC, Park HR, Jung U, Jang JS, Jo SK. 2009. Protective effect of an herbal preparation (HemoHIM) on radiation-induced intestinal injury in mice. J Med Food 12: 1353-1358. https://doi.org/10.1089/jmf.2008.1322
  28. Park HR, Jo SK, Jung U, Yee ST, Kim SH. 2014. Protective effects of HemoHIM on immune and hematopoietic systems against ${\gamma}$-irradiation. Phytother Res 28: 245-251. https://doi.org/10.1002/ptr.4982
  29. Park HR, Jo SK, Choi NH, Jung U. 2013. HemoHIM ameliorates the persistent down-regulation of Th1-like immune responses in fractionated ${\gamma}$-irradiated mice by modulating the IL-12p70-STAT4 signaling pathway. Radiat Res 177: 676-684.
  30. Park HR, Ju EJ, Jo SK, Jung U, Kim SH. 2010. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice. J Med Food 13: 47-53. https://doi.org/10.1089/jmf.2009.1049
  31. Park HR, Ju EJ, Jo SK, Jung U, Kim SH, Yee ST. 2009. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice. BMC Cancer 9: 85. https://doi.org/10.1186/1471-2407-9-85
  32. Park HR, Jo SK, Jung U, Yee ST. 2008. Restoration of the immune functions in aged mice by supplementation with a new herbal composition, HemoHIM. Phytother Res 22: 36-42. https://doi.org/10.1002/ptr.2255
  33. Kim JJ, Cho HW, Park HR, Jung U, Jo SK, Yee ST. 2013. Preventative effect of an herbal preparation (HemoHIM) on development of airway inflammation in mice via modulation of Th1/2 cells differentiation. PLoS ONE 8: e68552. https://doi.org/10.1371/journal.pone.0068552
  34. Chaudhary S, Chandrashekar KS, Pai KS, Setty MM, Devkar RA, Reddy ND, Shoja MH. 2015. Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complement Altern Med 15: 50. https://doi.org/10.1186/s12906-015-0563-1
  35. Asghar N, Naqvi SA, Hussain Z, Rasool N, Khan ZA, Shahzad SA, Sherazi TA, Janjua MR, Nagra SA, Zia-Ul-Haq M, Jaafar HZ. 2016. Compositional difference in antioxidant and antibacterial activity of all parts of the Carica papaya using different solvents. Chem Cent J 10: 5. https://doi.org/10.1186/s13065-016-0149-0
  36. Gutteridge JM. 1984. Reactivity of hydroxyl and hydroxyllike radicals discriminated by release of thiobarbituric acidreactive material from deoxy sugars, nucleosides and benzoate. Biochem J 15: 761-767.
  37. Peskin AV, Winterbourn CC. 2000. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin Chim Acta 293: 157-166. https://doi.org/10.1016/S0009-8981(99)00246-6
  38. Milas L, Hunter N, Ito H, Peters LJ. 1984. In vivo radioprotective activities of diethyldithiocarbamate (DDC). Int J Radiat Oncol Biol Phys 10: 2335-2343. https://doi.org/10.1016/0360-3016(84)90242-6
  39. Duke RC, Chervenak R, Cohen JJ. 1983. Endogenous endonuclease-induced DNA fragmentation: an early event in cell-mediated cytolysis. Proc Natl Acad Sci U S A 80: 6361-6315. https://doi.org/10.1073/pnas.80.20.6361
  40. Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139: 271-279. https://doi.org/10.1016/0022-1759(91)90198-O
  41. Withers HR, Elkind MM. 1970. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int J Radiat Biol Relat Stud Phys Chem Med 17: 261-267. https://doi.org/10.1080/09553007014550291
  42. Hall EJ. 1988. Radiobiology for the radiologist. 3rd ed. J.B. Lippincott Company, Philadelphia, PA, USA. p 365-376.
  43. Pamujula S, Kishore V, Rider B, Fermin CD, Graves RA, Agrawal KC, Mandal TK. 2005. Radioprotection in mice following oral delivery of amifostine nanoparticles. Int J Radiat Biol 81: 251-257. https://doi.org/10.1080/09553000500103470
  44. Ghosh SP, Kulkarni S, Perkins MW, Hieber K, Pessu RL, Gambles K, Maniar M, Kao TC, Seed TM, Kumar KS. 2012. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD(R) in mice. J Radiat Res 53: 526-536. https://doi.org/10.1093/jrr/rrs001
  45. Nair GG, Nair CK. 2013. Radioprotective effects of gallic acid in mice. Biomed Res Int 2013: 953079.
  46. Singh VK, Hauer-Jensen M. 2016. ${\gamma}$-Tocotrienol as a promising countermeasure for acute radiation syndrome: Current Status. Int J Mol Sci 37: E663.
  47. Verma P, Jahan S, Kim TH, Goyal PK. 2011. Management of radiation injuries by panax ginseng extract. J Ginseng Res 35: 261-271. https://doi.org/10.5142/jgr.2011.35.3.261
  48. Jothy SL, Saito T, Kanwar JR, Chen Y, Aziz A, Yin-Hui L, Sasidharan S. 2016. Radioprotective activity of Polyalthia longifolia standardized extract against X-ray radiation injury in mice. Phys Med 32: 150-161.
  49. Jiang S, Shen X, Liu Y, He Y, Jiang D, Chen W. 2015. Radioprotective effects of Sipunculus nudus L. polysaccharide combined with WR-2721, rhIL-11 and rhG-CSF on radiation-injured mice. J Radiat Res 56: 515-522. https://doi.org/10.1093/jrr/rrv009

Cited by

  1. Preventive Effect of the Herbal Preparation, HemoHIM, on Cisplatin-Induced Immune Suppression vol.2019, pp.None, 2016, https://doi.org/10.1155/2019/3494806
  2. Antioxidant and antifatigue effect of a standardized fraction (HemoHIM) from Angelica gigas, Cnidium officinale, and Paeonia lactiflora vol.59, pp.1, 2021, https://doi.org/10.1080/13880209.2021.1900878