• Title/Summary/Keyword: cavity volume

Search Result 328, Processing Time 0.031 seconds

병렬 컴퓨터에서 다중블록 유한체적법을 이용한 비압축성 유동해석 (Numerical Prediction of Incompressible Flows Using a Multi-Block Finite Volume Method on a Parellel Computer)

  • 강동진;손정락
    • 한국유체기계학회 논문집
    • /
    • 제1권1호
    • /
    • pp.72-80
    • /
    • 1998
  • Computational analysis of incompressible flows by numerically solving Navier-Stokes equations using multi-block finite volume method is conducted on a parallel computing system. Numerical algorithms adopted in this study $include^{(1)}$ QUICK upwinding scheme for convective $terms,^{(2)}$ central differencing for other terms $and^{(3)}$ the second-order Euler differencing for time-marching procedure. Structured grids are used on the body-fitted coordinate with multi-block concept which uses overlaid grids on the block-interfacing boundaries. Computational code is parallelized on the MPI environment. Numerical accuracy of the computational method is verified by solving a benchmark test case of the flow inside two-dimensional rectangular cavity. Computation in the axial compressor cascade is conducted by using 4 PE's md, as results, no numerical instabilities are observed and it is expected that the present computational method can be applied to the turbomachinery flow problems without major difficulties.

  • PDF

EVALUATION OF VOLUME VELOCITY OF A LOUDSPEAKER IN A CHAMBER

  • Lee, J.S.;Ih, J.G.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.770-774
    • /
    • 1994
  • The volume of an acoustic source is important in determining various acoustic parameters. One of the suggested techniques is the internal pressure method incorporating a loudspeaker attached to a chamber wall and a microphone inserted into the cavity. Although the method is easy to handle with a very simple measurement setup, the coupling effects between the dynamic system of the loudspeaker and acoustic field, and the effects of higher order modes introduced by the discontinuities in the acoustic field, and the effects of higher order modes introduced by the discontinuities in the acoustic field should be considered for precise result. In this study, higher order modes due to the discontinuities of loudspeaker and microphone boundaries are included and the electro-acoustic coupling effects are compensated for by using the results of two cylinders with different lengths. The volume velocity of a loudspeaker thus obtained agrees very with that measured by laser sensor.

  • PDF

2차원 초공동 유동의 중력과 자유표면 효과에 대한 수치해석 (A Numerical Analysis of Gravity and Free Surface Effects on a Two-Dimensional Supercavitating Flow)

  • 김형태;이현배
    • 대한조선학회논문집
    • /
    • 제51권5호
    • /
    • pp.435-449
    • /
    • 2014
  • The effects of the gravity field and the free surface on the cavity shape and the drag are investigated through a numerical analysis for the steady supercavitating flow past a simple two-dimensional body underneath the free surface. The continuity and the RANS equations are numerically solved for an incompressible fluid using a $k-{\epsilon}$ turbulence model and a mixture fluid model has been applied for calculating the multiphase flow of air, water and vapor using the method of volume of fluid and the Schnerr-Sauer cavitation model. Numerical solutions have been obtained for the supercavitating flow about a two-dimensional $30^{\circ}$ wedge in wide range of depths of submergence and inflow velocities. The results are presented for the cavity shape, especially the length and the width, and the drag of the wedge in comparison with those of the case for the infinite fluid flow neglecting the gravity and the free surface. The influences of the gravity field and the free surface on the aforementioned quantities are discussed. The length and the width of the supercavity are reduced and the centerline of the cavity rises toward the free surface due to the effects of the gravity field and the free surface. The drag coefficient of the wedge, however, is about the same except for shallow depths of submergence. As the supercavitating wedge is approaching very close to the free surface, it is found the length and the width of a cavity are shorten even though the cavitation number is reduced. Also the present result suggests that, under the influence of the gravity field and the free surface, the length of the supercavity for a certain cavitation number varies and moreover is proportional to the inverse of the submergence depth Froude number.

Volumetric measurement of the tongue and oral cavity with cone-beam computed tomography: A systematic review

  • Kannitha Alina, Aflah;Winny, Yohana;Fahmi, Oscandar
    • Imaging Science in Dentistry
    • /
    • 제52권4호
    • /
    • pp.333-342
    • /
    • 2022
  • Purpose: The goal of this systematic review was to compare the use of cone-beam computed tomography (CBCT) with that of computed tomography (CT) for volumetric evaluations of the tongue and oral cavity. Materials and Methods: A search for articles was conducted in accordance with the Preferred Reporting Items for Systematic Review and Meta-analyses guidelines. The PubMed, Scopus, ScienceDirect, and SAGE Journals databases were searched for articles published between 2011 and 2021. Articles were screened and assessed for eligibility. Screening involved checking for duplication, reading the title and abstract, and reading the full text. Results: The initial search retrieved 25,780 articles. Application of the eligibility criteria yielded 16 articles for qualitative analysis. Multiple uses of CBCT were identified. In several studies, researchers assessed the volumetric correlation between tongue and oral cavity volumes, as well as other parameters. Post-treatment volumetric evaluations of the oral cavity were also reported, and the reliability of CBCT was assessed. The use of CT resembled that of CBCT. Conclusion: CBCT has been used in the evaluation of tongue and oral cavity volumes to assess correlations between those volumes and with the upper airway. It has also been used for volumetric evaluation after surgical and nonsurgical procedures and to assess the relationships between tongue volume, tooth position, occlusion, and body mass index. Participants with obstructive sleep apnea and malocclusion have been evaluated, and the reliability of CBCT has been assessed. In the included studies, CT was utilized for similar purposes as CBCT, but its reliability was not assessed.

Application of Rapid Prototyping Technique and Intraoperative Navigation System for the Repair and Reconstruction of Orbital Wall Fractures

  • Cha, Jong Hyun;Lee, Yong Hae;Ruy, Wan Chul;Roe, Young;Moon, Myung Ho;Jung, Sung Gyun
    • 대한두개안면성형외과학회지
    • /
    • 제17권3호
    • /
    • pp.146-153
    • /
    • 2016
  • Background: Restoring the orbital cavity in large blow out fractures is a challenge for surgeons due to the anatomical complexity. This study evaluated the clinical outcomes and orbital volume after orbital wall fracture repair using a rapid prototyping (RP) technique and intraoperative navigation system. Methods: This prospective study was conducted on the medical records and radiology records of 12 patients who had undergone a unilateral blow out fracture reconstruction using a RP technique and an intraoperative navigation system from November 2014 to March 2015. The surgical results were assessed by an ophthalmic examination and a comparison of the preoperative and postoperative orbital volume ratio (OVR) values. Results: All patients had a successful treatment outcome without complications. Volumetric analysis revealed a significant decrease in the mean OVR from $1.0952{\pm}0.0662$ (ranging from 0.9917 to 1.2509) preoperatively to $0.9942{\pm}0.0427$ (ranging from 0.9394 to 1.0680) postoperatively. Conclusion: The application of a RP technique for the repair of orbital wall fractures is a useful tool that may help improve the clinical outcomes by understanding the individual anatomy, determining the operability, and restoring the orbital cavity volume through optimal implant positioning along with an intraoperative navigation system.

비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석 (CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

핫엠보싱 충전공정에 관한 수치해석 (Numerical simulation of hot embossing filling)

  • 강태곤;권태헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

3차원 강소성 유한요소법을 이용한 환상압연공정중 형상결함의 예측 (Prediction of Defect Formation in Ring Rolling by the Three-Dimensional Rigid-Plastic Finite Element Method)

  • 문호근;정재헌;박창남;전만수
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1492-1499
    • /
    • 2004
  • In this paper, defect formation in ring rolling is revealed by computer simulation of ring rolling processes. The rigid-plastic finite element method is employed for this study. An analysis model having relatively fine mesh system near the roll gap is used for reducing the computational time and a scheme of minimizing the volume change is applied. The formation of the central cavity formation defect in ring rolling of a taper roller bearing outer race and the polygonal shape defect in ring rolling of a ball bearing outer race has been simulated. It has been seen that the results are qualitatively good with actual phenomena.

실내화재에 있어서의 대류열전달에 관한 수치연구 - I. 수치법 검증과 자연대류- (Numerical Study on Convective Heat Transfer in a Compartment Fire - I. Evaluation of Numerical Method and Natural Convection-)

  • 박외철;고경찬
    • 한국안전학회지
    • /
    • 제14권2호
    • /
    • pp.26-31
    • /
    • 1999
  • In a compartment fire, convective heat transfer dominates spread of the fire and smoke movement before flash-over occurs, and natural convection is very important in particular when there are no openings. The finite volume method with SIMPLE algorithm was applied to a square cavity similar to a compartment without an opening. The objectives of this study are to evaluate the method and to simulate natural convection from a hot body in the cavity. The results without the hot body showed an excellent agreement with those of previous studies. Streamlines, isotherms and Nusselt numbers were computed for different Rayleigh numbers.

  • PDF

박막을 이용한 저주파수 영역 덕트 소음 저감 방법 (Low Frequency Noise Reduction Inside Duct by Using Membrane)

  • 김양한
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1083-1090
    • /
    • 2004
  • Two noise reduction systems are proposed in order to overcome the geometric restriction of the reactive muffler such as an expansion chamber. First, membrane is installed as a part of a duct wall and an air cavity is covered outside membrane. Second, membrane is installed inside a duct, which gives no volume change of the duct. Structural-acoustic coupling between membrane and fluid inside the cavity and duct causes rapid impedance mismatching and thereby reflected wave. Theoretical prediction is conducted by using modal expansion approach. The results are compared with the experimental results, which show better noise reduction performance than an expansion chamber.