• Title/Summary/Keyword: cation doping

Search Result 33, Processing Time 0.02 seconds

Magnetic Properties and Cation Distribution of Phosphorous-Doped $Co-{\gamma}-{Fe_2} {O_3}$ Particles

  • Na, J.G.;Han, D.H.
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.51-54
    • /
    • 1996
  • The effects of additional P-doping on the magnetic properties, thermal stability and cation distribution of Co-doped ${\gamma}-{Fe_2} {O_3}$have been investigated by means of magnetic annealing and measurements with vibration sample magnetometer and torque magnetometer. It is found that the P-doping promotes the coercivity and its magnetic-thermal stability, which may be attributed to increase of the cubic magneto-crystalline anisotropy constant, $K_1$ and the activation energy, E, for cation rearrangement, respectively. The cation distribution of P and Co-substituted iron oxide was calculated from the variation of the saturation magnetization with P-doping on the basis of the Neel model. It was found that the most of P ions in the iron oxides occupied the B-site of spinel lattice.

  • PDF

Electrochemical Properties of $LiM_xFe_{1_x}PO_4$ Cathode Materials By Solid-state Reaction

  • Wang, Wan-Lin;Park, Kyung-Hee;Gil, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.212-212
    • /
    • 2010
  • Recently, lithium transition metal phosphates with an ordered olivine-type structure, $LiMPO_4$ (M=Fe, Mn, Ni, and Co), have attracted extensive attention due to a high theoretical specific capacity (170 mAh/g). The $LiMPO_4$ is the most attractive because of its high stability, low cost, high compatibility with environment. However, it is difficult to attain its full capacity because its electronic conductivity is very low, and diffusion of Li-ion in the olivine structure is slow and the supervalue cation doping was used. In this research, we are used the supervalue cation doping methode such as Cu, Ti, and Mg were partially replace the Fe. The cycling performance resulted of the used $LiM_xFe_{1_x}PO_4$ cathode materials for lithium batteries exhibit excellent high capacity than $LiFePO_4$/Li cells.

  • PDF

Tin Doping Mechanism in Indium Oxide by MD Simulation

  • Utsuno, Futoshi;Yamada, Naoomi;Kamei, Masayuki;Yasui, Itaru
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.40-43
    • /
    • 1999
  • In order to investigate Sn substitution sites and interstitial O atoms in tin-doped indium oxide, molecular dynamics (MD) simulations were carried out. There are two kinds of cation sites in $In_2O_3$, namely b-site and d-site. NTP-MD simulations under the condition of 300 K and 0 GPa were performed with two kinds of cells substituted by Sn atoms at each site. The excess oxygen atom accompanied with Sn doping was also taken into consideration. According to the calculations of Sn potential energies in each site, it was revealed that Sn atoms were substituted for b-sites rather than for d-sites. It was also revealed that the interstitial excess oxygen atoms tend to be connected with the Sn atoms substituted for the d-sites Sn rather than for the b-site. There MD simulation results well agreed with the experimental results.

  • PDF

Structural and Electrochemical Properties of Doped LiFe0.48Mn0.48Mg0.04PO4 as Cathode Material for Lithium ion Batteries

  • Jang, Donghyuk;Palanisamy, Kowsalya;Kim, Yunok;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.102-107
    • /
    • 2013
  • The electrochemical properties of Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ and pure $LiFe_{0.5}Mn_{0.5}PO_4$ olivine cathodes are examined and the lattice parameters are refined by Rietveld analysis. The calculated atomic parameters from the refinement show that $Mg^{2+}$ doping has a significant effect in the olivine $LiFeMnPO_4$ structure. The unit cell volume is 297.053(2) ${\AA}^3$ for pure $LiFe_{0.5}Mn_{0.5}PO_4$ and is decreased to 296.177(1) ${\AA}^3$ for Mg-doped $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample. The doping of $Mg^{2+}$ cation with atomic radius smaller than $Mn^{2+}$ and $Fe^{2+}$ ion induces longer Li-O bond length in $LiO_6$ octahedra of the olivine structure. The larger interstitial sites in $LiO_6$ octahedra facilitate the lithium ion migration and also enhance the diffusion kinetics of olivine cathode material. The $LiFe_{0.48}Mn_{0.48}Mg_{0.04}PO_4$ sample with larger Li-O bond length delivers higher discharge capacities and also notably increases the rate capability of the electrode.

Photoluminescence Enhancement of Y2O3:Eu3+ Red Phosphor Prepared by Spray Pyrolysis using Aliovalent Cation Substitution and Organic Additives (이가 양이온 금속 친환 및 유기 첨가제를 이용하여 분무열분해법으로 제조된 Y2O3:Eu3+ 적색 형광체의 휘도 개선)

  • Min, Byeong Ho;Jung, Kyeong Youl
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.146-153
    • /
    • 2020
  • The co-doping effect of aliovalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+, and Zn2+ on the photoluminescence of the Y2O3:Eu3+ red phosphor, prepared by spray pyrolysis, is analyzed. Mg2+ metal doping is found to be helpful for enhancing the luminescence of Y2O3:Eu3+. When comparing the luminescence intensity at the optimum doping level of each Mg2+ ion, the emission enhancement shows the order of Zn2+ ≈ Ba2+ > Ca2+ > Sr3+ > Mg2+. The highest emission occurs when doping approximately 1.3% Zn2+, which is approximately 127% of the luminescence intensity of pure Y2O3:Eu3+. The highest emission was about 127% of the luminescence intensity of pure Y2O3:Eu3+ when doping about 1.3% Zn2+. It is determined that the reason (Y, M)2O3:Eu3+ has improved luminescence compared to that of Y2O3:Eu3+ is because the crystallinity of the matrix is improved and the non-luminous defects are reduced, even though local lattice strain is formed by the doping of aliovalent metal. Further improvement of the luminescence is achieved while reducing the particle size by using Li2CO3 as a flux with organic additives.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Synergy Effect of K Doping and Nb Oxide Coating on Li1.2Ni0.13Co0.13Mn0.54O2 Cathodes

  • Kim, Hyung Gi;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.377-386
    • /
    • 2021
  • The Li-rich oxides are promising cathode materials due to their high energy density. However, characteristics such as low rate capability, unstable cyclic performance, and rapid capacity fading during cycling prevent their commercialization. These characteristics are mainly attributed to the phase instability of the host structure and undesirable side reactions at the cathode/electrolyte interface. To suppress the phase transition during cycling and interfacial side reactions with the reactive electrolyte, K (potassium) doping and Nb oxide coating were simultaneously introduced to a Li-rich oxide (Li1.2Ni0.13Co0.13Mn0.54O2). The capacity and rate capability of the Li-rich oxide were significantly enhanced by K doping. Considering the X-ray diffraction (XRD) analysis, the interslab thickness of LiO2 increased and cation mixing decreased due to K doping, which facilitated Li migration during cycling and resulted in enhanced capacity and rate capability. The K-doped Li-rich oxide also exhibited considerably improved cyclic performance, probably because the large K+ ions disturb the migration of the transition metals causing the phase transition and act as a pillar stabilizing the host structure during cycling. The Nb oxide coating also considerably enhanced the capacity and rate capability of the samples, indicating that the undesirable interfacial layer formed from the side reaction was a major resistance factor that reduced the capacity of the cathode. This result confirms that the introduction of K doping and Nb oxide coating is an effective approach to enhance the electrochemical performance of Li-rich oxides.

An Investigation of Electrical Properties in Cation-anion Codoped ZnO by Atomic Layer Deposition (원자층 증착법 기반 양이온-음이온 이중 도핑 효과에 따른 ZnO 박막의 전기적 특성 비교 연구)

  • Dong-eun Kim;Geonwoo Kim;Kyung-Mun Kang;Akendra Singh Chabungbam;Hyung-Ho Park
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Zinc oxide(ZnO) is a semiconductor material with a bandgap of 3.37 eV and an exciton binding energy of 60 meV for various applications. Recently ZnO has been proven to enhance its electrical properties for utilization as an alternative for transparent conducting oxide (TCO) materials. In this study, cation(Al, Ga)-anion(F) single and double doped ZnO thin films were grown by atomic layer deposition (ALD) to enhance the electrical properties. The structural and optical properties of doped ZnO thin films were analyzed, and doping effects were confirmed to electrical characteristics. In single doped ZnO, it was observed that the carrier concentration was increased after doping, acting as a donor to ZnO. Among the single doping elements, F doped ZnO(FZO) showed the highest mobility and conductivity due to the passivation effect of oxygen vacancies. In the case of double doping, higher electrical characteristics were observed compared to single doping. Among the samples, Al-F doped ZnO(AFZO) exhibited the lowest resistance value. This results can be attributed to an increase in delocalized electron states and a decrease in lattice distortion resulting from the differences in ionic radius. The partial density of states(PDOS) was also analyzed and observed to be consistent with the experimental results.

Analysis of the Improvement of Photoelectrical Properties of Cu2ZnSn(S,Se)4 Thin Film and Solar Cells V ia Cation Doping (양이온 도핑을 통한 Cu2ZnSn(S,Se)4 박막의 광전기적 특성 향상 및 이를 적용시킨 박막 태양전지의 효율 향상 분석)

  • Youngrog Kim;Suyoung Jang;Jun Sung Jang;Dong Hyun Kang;Jin Hyeok Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.10
    • /
    • pp.515-521
    • /
    • 2024
  • Solar energy has been recognized as an alternative energy source that can help address fuel depletion and climate change issues. As a renewable energy alternative to fossil fuels, it is an eco-friendly and unlimited energy source. Among solar cells, thin film Cu2ZnSn(S,Se)4 (CZTSSe) is currently being actively studied as an alternative to heavily commercialized Cu(In,Ga)Se2 (CIGS) thin film solar cells, which rely upon costly and scarce indium and gallium. Currently, the highest efficiency achieved by CZTSSe cells is 14.9 %, lower than the CIGS record of 23.35 %. When applied to devices, CZTSSe thin films perform poorly compared to other materials due to problems including lattice defects, conduction band offset, secondary phase information, and narrow stable phase regions, so improving their performance is essential. Research into ways of improving performance by doping with Germanium and Cadmium is underway. Specifically, Ge can be doped into CZTSSe, replacing Sn to reduce pinholes and bulk recombination. Additionally, partially replacing Zn with Cd can facilitate grain growth and suppress secondary phase formation. In this study, we analyzed the device's performance after doping Ge into CZTSSe thin film using evaporation, and doping Cd using chemical bath deposition. The Ge doped thin film showed a larger bandgap than the undoped reference thin film, achieving the highest Voc of 494 mV in the device. The Cd doped thin film showed a smaller bandgap than the undoped reference thin film, with the highest Jsc of 36.9 mA/cm2. As a result, the thin film solar cells achieved a power conversion efficiency of 10.84 %, representing a 20 % improvement in power conversion efficiency compared to the undoped reference device.