Browse > Article
http://dx.doi.org/10.4150/KPMI.2020.27.2.146

Photoluminescence Enhancement of Y2O3:Eu3+ Red Phosphor Prepared by Spray Pyrolysis using Aliovalent Cation Substitution and Organic Additives  

Min, Byeong Ho (Department of Chemical Engineering, Kongju National University)
Jung, Kyeong Youl (Department of Chemical Engineering, Kongju National University)
Publication Information
Journal of Powder Materials / v.27, no.2, 2020 , pp. 146-153 More about this Journal
Abstract
The co-doping effect of aliovalent metal ions such as Mg2+, Ca2+, Sr2+, Ba2+, and Zn2+ on the photoluminescence of the Y2O3:Eu3+ red phosphor, prepared by spray pyrolysis, is analyzed. Mg2+ metal doping is found to be helpful for enhancing the luminescence of Y2O3:Eu3+. When comparing the luminescence intensity at the optimum doping level of each Mg2+ ion, the emission enhancement shows the order of Zn2+ ≈ Ba2+ > Ca2+ > Sr3+ > Mg2+. The highest emission occurs when doping approximately 1.3% Zn2+, which is approximately 127% of the luminescence intensity of pure Y2O3:Eu3+. The highest emission was about 127% of the luminescence intensity of pure Y2O3:Eu3+ when doping about 1.3% Zn2+. It is determined that the reason (Y, M)2O3:Eu3+ has improved luminescence compared to that of Y2O3:Eu3+ is because the crystallinity of the matrix is improved and the non-luminous defects are reduced, even though local lattice strain is formed by the doping of aliovalent metal. Further improvement of the luminescence is achieved while reducing the particle size by using Li2CO3 as a flux with organic additives.
Keywords
Spray pyrolysis; $Y_2O_3$; Red phosphor; Aliovalent metal doping; Nnaoparticles;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Q. Tan, J. Li and X. Zeng: Crit. Rev. Env. Sci. Technol., 45 (2015) 749.   DOI
2 X. Hou, S. Zhou, Y. Li and W. Li: J. Alloys Compd., 494 (2010) 382.   DOI
3 T. Ji, H. Jiang and F. Chen: J. Alloys Compd., 502 (2010) 180.   DOI
4 H.-S. Kim and I.-K. Park: J. Phys. Chem. Solids, 117 (2018) 188.   DOI
5 A. Yousif, B. H. Abas, S. Som, N. J. Shivaramu and H. C. Swart: Mater. Res. Bull., 124 (2020) 110752.   DOI
6 Q.-Q. Zhu, P.-F. Yang, Z.-Y. Wang and P.-C. Hu: J. Eur. Ceram. Soc., 40 (2020) 2426.   DOI
7 H. S. Yoo, W. B. Im, S. W. Kim, B. W. Kwon and D. Y. Jeon: J. Lumin., 130 (2010) 153.   DOI
8 W. Liu, Y. Wang, M. Zhang and Y. Zhang: Mater. Lett., 96 (2013) 42.   DOI
9 L. Gao, G. Wang, H. Zhu, W. Zhou and G. Ou: Mater. Res. Bull., 70 (2015) 876.   DOI
10 K. Y. Jung, Y. C. Kang and Y.-K. Park: J. Ind. Eng. Chem., 14 (2008) 224.   DOI
11 J. S. Cho, K. Y. Jung, Y. Y. Son and Y. C. Kang: RSC Adv., 4 (2014) 62965.   DOI
12 B. H. Min and K. Y. Jung: RSC Adv., 7 (2017) 44759.   DOI
13 B. H. Min and K. Y. Jung: RSC Adv., 9 (2019) 20002.   DOI
14 K. Park, H. Kim and D. A. Hakeen: Dyes Pigm., 136 (2017) 70.   DOI
15 L. Li and H.-Y. Wu: J. Alloys Compd., 702 (2017) 106.   DOI
16 K. Y. Jung, H. W. Lee, Y. C. Kang, S. B. Park and Y. S. Yang: Chem. Mater., 17 (2005) 2729.   DOI
17 Y. X. Pan and G. K. Liu: J. Lumin., 131 (2011) 465.   DOI
18 G. B. Nair, A. Kumar, H. C. Swart and S. J. Dhoble: Ceram. Int., 45 (2019) 21709.   DOI
19 X. Vendrell, D. Yadav, R. Raj and A. R. West: J. Eur. Ceram. Soc., 39 (2019) 1532.   DOI
20 L. Sun, C. Qian, C. Liao, X. Wang and C. Yan: Solid State Commun., 119 (2001) 393.   DOI
21 H. Liang, Y. Zheng, G. Chen, L. Wu, Z. Zhang and W. Cao: J. Alloys Compd., 509 (2011) 409.   DOI
22 R. Debnath and A. N. A. Ghosh: Chem. Phys. Lett., 27 (2007) 324.
23 A. L. Patterson: Phys. Rev., 56 (1939) 978.   DOI
24 G. K. Williamson and W. H. Hall: Acta Metall., 1 (1953) 22.   DOI
25 C. H. Lee, K. Y. Jung, J. G. Choi and Y. C. Kang: Mater Sci. Eng. B, 116 (2005) 59.   DOI