• 제목/요약/키워드: catechol ortho-cleavage pathway

검색결과 11건 처리시간 0.033초

Roles of the meta- and the ortho-Cleavage Pathways for the Efficient Utilization of Aromatic Hydrocarbons by Sphingomonas yanoikuyae Bl

  • 송정민;김영민;Gerben J. Zylstra;김응빈
    • 미생물학회지
    • /
    • 제38권4호
    • /
    • pp.245-245
    • /
    • 2002
  • Catabolic pathways for the degradation of various aromatics by Sphingomonas yanoikuyae Bl are intertwined, joining at the level of substituted benzoates, which are further degraded vita ring cleavage reactions. The mutant strain EK497, which was constructed by deleting a large DNA region containing most of the genes for biphenyl, naphthalene, m-xylene, and m-toluate degradation, was unable to grow on all of the aromatics tested except for benzoate as the sole source of carbon and energy.S. yanoikuyae EK497 was found to possess only catechol ortho-ring cleavage activity due to deletion of the genes for the meta-cleavage pathway. Wild-type S. yanoikuyae Bl grown on benzoate has both catechol orthoand meta-cleavage activity. However, m-xylene and m-toluate, which are metabolized through methylbenzoate, and biphenyl, which is metabolized through benzoate, induce only the meta-cleavage pathway, suggesting the presence of a substrate-dependent induction mechanism.

S. setonii 유래 고온성 catechol-1,2-dioxgenase 특성연구

  • 박현주;이복남;안혜련;김응수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.434-437
    • /
    • 2000
  • Streptomyces setonii(ATCC 39116) is a thermophilic gram-positive soil bacteria which undergoes an ortho-cleavage pathway in the presence of phenol or benzoate as a sole carbon and energy source. The specific activities of catechol-1,2-dioxygenase in S. setonii, a key enzyme in ortho-cleavage pathway, were induced by various aromatic compounds such as benzoate, phenol, m-hy-benzoate, p-hy-benzoate, catechol, o-cresol, m-cresol, p-cresol, benzene, toluene, ethyl-benzene, 2-chloro-phenol, and 4-chloro-phenol, among which the phenol showed the highest inducibility in the presence of 0.01% glucose. More than 0.1% glucose dramatically reduced the specific activities of catechol-1,2-dioxygenase induced by most of the single aromatic compounds tested.

  • PDF

Characterization of Benzoate Degradation via ortho-Cleavage by Streptomyces setonii

  • An, Hae-Reun;Park, Hyun-Joo;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권1호
    • /
    • pp.111-114
    • /
    • 2000
  • Streptomyces are widespread in nature and play a very important role in the biosynthesis as well as biodegradation of natural and unnatural aromatic compounds. Both qualitatively and quantitatively through TLC and UV spectrophotometric assays, it was observed that the thermophilic soil bacteria S. setonii (ATCC 39116), which can utilize a benzoate as a sole carbon and energy source in a minimal liquid culture, was not very sensitive to the benzoate concentation and to the culture conditions such as the pH and temperature. The in vitro conversion of a catechol to a cis, cis-muconic acid by a crude S. setonii lysate implies that the aromatic ring cleavage by S. setonii is initiated by a thermostable catechol-1,2-dioxygenase, the key enzyme in the ortho-cleavage pathway of aromatic compound biodegradation. Unlike non-degrading S. lividans, S.setonii was also highly resistant to other similar hazardous aromatic compounds, exhibiting almost no adverse effect on its growth in a complex liquid culture.

  • PDF

Roles of the meta- and the ortho-Cleavage Pathways for the Efficient Utilization of Aromatic Hydrocarbons by Sphingomonas yanoikuyae Bl

  • Jeongmin Song;Junghee Sung;Kim, Young-Min;Gerben J. Zylstra;Kim, Eungbin
    • Journal of Microbiology
    • /
    • 제38권4호
    • /
    • pp.245-249
    • /
    • 2000
  • Catabolic pathways for the degradation of various aromatics by Sphingomonas yanoikuyae Bl are intertwined, joining at the level of substituted benzoates, which are further degraded vita ring cleavage reactions. The mutant strain EK497, which was constructed by deleting a large DNA region containing most of the genes for biphenyl, naphthalene, m-xylene, and m-toluate degradation, was unable to grow on all of the aromatics tested except for benzoate as the sole source of carbon and energy.S. yanoikuyae EK497 was found to possess only catechol ortho-ring cleavage activity due to deletion of the genes for the meta-cleavage pathway. Wild-type S. yanoikuyae Bl grown on benzoate has both catechol orthoand meta-cleavage activity. However, m-xylene and m-toluate, which are metabolized through methylbenzoate, and biphenyl, which is metabolized through benzoate, induce only the meta-cleavage pathway, suggesting the presence of a substrate-dependent induction mechanism.

  • PDF

솔잎 퇴적물에서 추출한 방향족 탄화수소물질 분해 박테리아의 동정 (Characterization of Aromatic Hydrocarbon Degrading Bacteria Isolated from Pine Litter)

  • 송윤재
    • 한국미생물·생명공학회지
    • /
    • 제37권4호
    • /
    • pp.333-339
    • /
    • 2009
  • 새로운 pine needle agar를 이용하여 15종의 박테리아를 솔잎퇴적물에서 추출하여 동정하였다. 이들 박테리아는 lignin biodegradation에서 주로 유도되는 방향족 탄화수소물질을 $\beta$-ketoadipate pathway의 ortho-cleavage를 이용하여 분해하는 것으로 밝혀졌다. 나아가서 이들 박테리아에 의한 여러 종의 방향족 탄화수소물질 분해에 관해서도 조사하였다. 본 연구는 솔잎 퇴적물에 존재하는 박테리아 종들이 방향족 탄화수소물질을 분해할 수 있는 대사능력을 가지고 있다는 것을 검증하였다.

Streptomycetes Inducible Gene Cluster Involved in Aromatic Compound Metabolism

  • 박현주;김응수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.422-427
    • /
    • 2003
  • Streptomyces setonii (ATCC 39116) is a Gram-positive thermophilic soil actinomycetes capable of degrading single aromatic compounds including phenol and benzoate via ortho-cleavage pathway. we isolated approximately 6.3-kb S. setonii DNA fragment containing a thermophilic catechol 1,2-dioxygenase(C12O) gene. Here we further revealed that the 6.3-kb S. setonii DNA fragment was organized into two putative divergently-transcribed clusters with 6 complete and one incomplete open reading frames (ORFs). The first cluster with 3 ORFs showed significant homologies to previously known benA, benB, and benC, implying a part of benzoate catabolic operon. The second cluster revealed an ortho-cleavage catechol catabolic operon with three translationally-coupled ORFs (catR, catB, catA). Each of these individually-cloned ORFs was expressed in E. coli and identified as a distinct protein band with a theoretical molecular weight in SDS-PAGE. The expression of the cloned S. setonii catechol operon was induced in a heterologous S. lividans by specific single aromatic compounds including catechol, phenol, and 4-chlorophenol. The simitar induction pattern was also observed using a luciferase gene-fused reporter system, implying that S. setonii employs an inducer-specific regulatory mechanism for aromatic compound metabolism.

  • PDF

Function and Molecular Ecology Significance of Two Catechol-Degrading Gene Clusters in Pseudomonas putida ND6

  • Shi, Sanyuan;Yang, Liu;Yang, Chen;Li, Shanshan;Zhao, Hong;Ren, Lu;Wang, Xiaokang;Lu, Fuping;Li, Ying;Zhao, Huabing
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.259-271
    • /
    • 2021
  • Many bacteria metabolize aromatic compounds via catechol as a catabolic intermediate, and possess multiple genes or clusters encoding catechol-cleavage enzymes. The presence of multiple isozyme-encoding genes is a widespread phenomenon that seems to give the carrying strains a selective advantage in the natural environment over those with only a single copy. In the naphthalene-degrading strain Pseudomonas putida ND6, catechol can be converted into intermediates of the tricarboxylic acid cycle via either the ortho- or meta-cleavage pathways. In this study, we demonstrated that the catechol ortho-cleavage pathway genes (catBICIAI and catBIICIIAII) on the chromosome play an important role. The catI and catII operons are co-transcribed, whereas catAI and catAII are under independent transcriptional regulation. We examined the binding of regulatory proteins to promoters. In the presence of cis-cis-muconate, a well-studied inducer of the cat gene cluster, CatRI and CatRII occupy an additional downstream site, designated as the activation binding site. Notably, CatRI binds to both the catI and catII promoters with high affinity, while CatRII binds weakly. This is likely caused by a T to G mutation in the G/T-N11-A motif. Specifically, we found that CatRI and CatRII regulate catBICIAI and catBIICIIAII in a cooperative manner, which provides new insights into naphthalene degradation.

Aniline 분해균주 Burkholderia sp. HY1과 Delftia sp. HY99에서 유래된 Aniline Dioxygenases 유전자의 비교 분석 (Comparative Analysis of Aniline Dioxygenase Genes from Aniline Degrading Bacteria, Burkholderia sp. HY1 and Delftia sp. HY99.)

  • 강형일;오계헌
    • 한국미생물·생명공학회지
    • /
    • 제35권2호
    • /
    • pp.104-111
    • /
    • 2007
  • 본 연구에서는 단일 탄소원과 질소원으로 aniline을 이용하는 것으로 보고된 바 있는 Bukholderia sp. HY1과 Deiftia sp. HY99로부터 aniline의 첫 번째 분해 단계에 관련된 aniline dioxygenas의 위치를 확인하고 그 유전자를 클로닝하여 아미노산 서열을 결정하고 비교하였다. 한 개 이상의 플라스미드 DNA를 포함하고 있을 것으로 조사된 B.a sp. HY1에서 유래된 플라스미드의 curing 실험을 통해, B. sp. HY1의 aniline oxygenase는 플라스미드가 아닌 염색체 DNA에 존재하는 것으로 확인되었다. B. sp. HY1과 D. sp. HY99에서 유래된 aniline dioxygenase small subunit는 146개 아미노산을 기준으로 약 79%의 상동성을 보였다. 특히, B. sp. HY1으로부터 얻어진 ado2는 aniline dioxygenase small subunit의 terminal dioxygenase에 속하는 것으로 Frateuria sp. ANA-18의 tdnA2와 99%, 그리고 Delftia sp. HY99의 ado2는 Delftia sp. AN3의 danA2와 99% 이상의 아미노산 상동성을 나타내었다. 또한 본 연구에서 두 균주에서 얻어진 catechol oxygenase의 아미노산 서열분석을 통해 B. sp. HY1은 catechol 1,2-dioxygenase에 의해 ortho pathway를 D. sp. HY99는 catechol 2,3-dioxygenase에 의해 meta pathway를 운영할 것이라는 이전 보고를 강력하게 뒷받침해 주었다.

폐광지역에서 분리한 quinoline 분해 세균인 Pseudomonas sp. NFQ-1의 특성연구 (Characterization of the Quinoline-Degrading Bacterium Pseudomonas sp. NFQ-1 Isolated from Dead Coal Pit Areas)

  • 윤경하;황선영;권오성;오계헌
    • KSBB Journal
    • /
    • 제18권3호
    • /
    • pp.174-179
    • /
    • 2003
  • 폐광지역으로부터 quinoline (2,3-benzopyridine)을 유일한 탄소원, 질소원, 그리고 에너지원으로 이용하는 세균 NFQ-1을 농화 배양기법을 통하여 분리하였다. 분리된 세균은 그람음성의 간균으로서 BIOLOG 시험을 통하여 Pseudomonas nitroreducens로 동정되었으며, 본 연구에서는 Pseudomonas sp. NFQ-1으로 명명하였다. Quinoline의 분해는 호기적 조건하의 B-배지에서 Pseudomonas sp. NFQ-1를 이용하여 실시되었다. 균주 NFQ-1 세균은 2.5 mM quinoline을 9시간 이내 완전히 분해하였다. 배양기간 동안 quinoline 분해의 중간대사산물인 2-hydroxyquinoline이 일시적으로 생성되었다가 배양기간 후반부에 사라졌다. 배양의 초기 pH 8.0은 6.8로 감소하다가 배양이 진행됨에 따라 7.0이 되었다. 대상 기질로서 quinoline의 농도가 증가함에 따라 생장곡선에서 유도기가 길어졌으며, 고농도의 quinoline (>15 mM)은 주어진 조건에서 균주의 생장과 quinoline의 분해를 억제하였다. 부가 질소원으로 7.6 mM $(\textrm{NH}_{4})_{2}\textrm{SO}_{4}$의 첨가조건하에서 Pseudomonas sp. NFQ-1은 2-hydroxyquinoline, p-coumaric acid, benzoic acid, p-cresol, p-hydroxybenzoate, protocatechuic acid, catechol 등의 다양한 화합물을 이용할 수 있었으나 일부 화합물들 (예, 6-hydroxyquinoline, 8-hydroxyquinoline, coumarin, indoline, pyridine, lepidine, quinaldine, 4-bydroxycournarin, benzene, salicylic acid, phenol, phthalate)은 탄소원으로 이용되지 못하였다. euinoline의 분해경로를 규명하기 위하여 catechol dioxygenases의 specific activity를 결정하였다. 그 값은 catechol 1,2-dioxygenase에서 약 184.7 U/mg, 그리고 catechol 1,2-dioxygenase에서 약 33.19 U/mg이었다. 그 결과 균주 NFQ-1은 quinoline를 분해하기 위하여 주로 ortho-분해경로를, 그리고 부분적으로 meta-분해경로를 이용하는 것을 보여주었다.

Phenol을 분해하는 Acinetobacter sp. GEM2의 분리 및 특성 (Isolation and Characterization of a Phenol-Degrading Strain Acinetobacter sp.GEM2)

  • 이창호;오희목;권태종;권기석;이성기;서현효;윤병대
    • 한국미생물·생명공학회지
    • /
    • 제22권6호
    • /
    • pp.692-699
    • /
    • 1994
  • A bacterial strain which formed a distinct colony on agar plate containing phenol as a vapor phase and grew well in a liquid minimal medium was isolated and identified as Acinetobac- ter sp. GEM2. The optimal temperature and initial pH for the growth of Acinetobacter sp. GEM2 were 30$\circ$C and 7.0, respectively. Cell growth was inhibited by phenol at the concentration over 1500 ppm. Cell growth dramatically increased from 10 hours after cultivation and almost showed a stationary phase within 24 hours at which 95% of phenol was concomitantly degraded. Acinetobac- ter sp. GEM2 was capable of growing on aromatic compounds, such as benzoic acid, phenol, m- cresol, o-cresol, P-cresol, catechol, gentisic acid, and toluene, but did not grow on benzene, salicylic acid, p-toluic acid, and p-xylene. By the analysis of catechol dioxygenase, it seemed that catechol was degraded through both meta- and ortho-cleavage pathway. The growth-limiting log P value of Acinetobacter sp. GEM2 on organic solvents was 2.0.

  • PDF