Browse > Article

Characterization of Aromatic Hydrocarbon Degrading Bacteria Isolated from Pine Litter  

Song, Yoon-Jae (Department of Life Science, Kyungwon University)
Publication Information
Microbiology and Biotechnology Letters / v.37, no.4, 2009 , pp. 333-339 More about this Journal
Abstract
Using a novel pine needle agar, fifteen bacterial species were isolated from pine litter. These bacteria were able to degrade aromatic hydrocarbons derived from lignin and utilize the ortho-cleavage of the $\beta$-ketoadipate pathway to degrade protocatechuate or catechol. A different utilization array of aromatic hydrocarbons by these bacteria was also determined. This study provides the information on bacterial species living in pine litter and suggests that these bacteria have metabolic abilities to utilize aromatic hydrocarbons derived from lignin biodegradation.
Keywords
Bioremediation; biodegradation; biogeochemical cycling; lignin; aromatic hydrocarbons; $\beta$-ketoadipate pathway;
Citations & Related Records

Times Cited By SCOPUS : 2
연도 인용수 순위
  • Reference
1 Crawford, R. L., J. W. Bromley, and P. E. Perkins-Olson. 1979. Catabolism of protocatechuate by Bacillus macerans. Appl. Environ. Microbiol. 37: 614-618   PUBMED   ScienceOn
2 Gerhardt, P., G. Murray, R. Costilow, E. Nester, W. Wood, N. Krieg, and G. Phillips. 1981. Manual of methods for general bacteriology. American Society for Microbiology, Washington, D. C
3 Harwood, C. S., and J. Gibson. 1988. Anaerobic and aerobic metabolism of diverse aromatic compounds by the photosynthetic bacterium Rhodopseudomonas palustris. Appl. Environ. Microbiol. 54: 712-717   PUBMED   ScienceOn
4 Smith, G. L., S. S. Socransky, and C. M. Smith. 1989. Rapid method for the purification of DNA from subgingival microorganisms. Oral. Microbiol. Immunol. 4: 47-51   DOI   ScienceOn
5 Wackett, L. P., and L. B. Ellis. 1999. Predicting biodegradation. Environ. Microbiol. 1: 119-124   DOI   ScienceOn
6 Sariyildiz, T., and J. M. Anderson. 2006. Intra-specific variation in cell wall constituents of needle age classes of Pinus sylvestris in relation to soil fertility status in southwest england. Silva Fennica 40: 15-26   ScienceOn
7 Masai, E., Y. Katayama, and M. Fukuda. 2007. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci. Biotechnol. Biochem. 71: 1-15   DOI   ScienceOn
8 Ottow, J. C. and W. Zolg. 1974. Improved procedure and colorimetric test for the detection of ortho- and meta-cleavage of protocatechuate by Pseudomonas isolates. Can. J. Microbiol. 20: 1059-1061   DOI   ScienceOn
9 Ornston, L. N. 1966. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. IV. Regulation. J. Biol. Chem. 241: 3800-3810   PUBMED
10 Rodriguez, J., A. Ferraz, R. F. Nogueira, I. Ferrer, E. Esposito, and N. Duran. 1997. Lignin biodegradation by the ascomycete Chrysonilia sitophila. Appl. Biochem. Biotechnol. 62: 233-242   DOI   ScienceOn
11 Crawford, R. L., S. W. Hutton, and P. J. Chapman. 1975. Purification and properties of gentisate 1,2-dioxygenase from Moraxella osloensis. J. Bacteriol. 121: 794-799   PUBMED
12 Kuipers, J. G., L. Nietfeld, U. Dreses-Werringloer, L. Koehler, J. Wollenhaupt, H. Zeidler, and M. Hammer. 1999. Optimised sample preparation of synovial fluid for detection of Chlamydia trachomatis DNA by polymerase chain reaction. Ann. Rheum. Dis. 58: 103-108   DOI   ScienceOn
13 Crawford, R. L. 1975. Novel pathway for degradation of protocatechuic acid in Bacillus species. J. Bacteriol. 121: 531-536   PUBMED
14 Stanier, R. Y., and L. N. Ornston. 1973. The beta-ketoadipate pathway. Adv. Microb. Physiol. 9: 89-151   DOI   PUBMED
15 Colberg, P. J., and L. Y. Young. 1985. Aromatic and Volatile Acid Intermediates Observed during Anaerobic Metabolism of Lignin-Derived Oligomers. Appl. Environ. Microbiol. 49:350-358   PUBMED   ScienceOn
16 ten Have, R., and P. J. Teunissen. 2001. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101: 3397-413   DOI   ScienceOn
17 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703   PUBMED
18 Harwood, C. S., and J. Gibson. 1997. Shedding light on anaerobic benzene ring degradation: a process unique to prokaryotes? J. Bacteriol. 179: 301-309   PUBMED   ScienceOn
19 Kirk, T. K., and R. L. Farrell. 1987. Enzymatic 'combustion': the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465-505   DOI   PUBMED   ScienceOn
20 Harwood, C. S., and R. E. Parales. 1996. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590   DOI   ScienceOn
21 Haritash, A. K., and C. P. Kaushik. 2009. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater
22 Nichols, N. N., and C. S. Harwood. 1995. Repression of 4-hydroxybenzoate transport and degradation by benzoate: a new layer of regulatory control in the Pseudomonas putida beta-ketoadipate pathway. J. Bacteriol. 177: 7033-7040   PUBMED
23 Dagley, S. 1971. Catabolism of aromatic compounds by micro-organisms. Adv. Microb. Physiol. 6: 1-46   DOI   PUBMED
24 Hegeman, G. D. 1966. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. 3. Isolation and properties of constitutive mutants. J. Bacteriol. 91: 1161-1167   PUBMED
25 Crawford, D. L., A. L. Pometto, and R. L. Crawford. 1983. Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl. Environ. Microbiol. 45: 898-904   PUBMED   ScienceOn