Characterization of the Quinoline-Degrading Bacterium Pseudomonas sp. NFQ-1 Isolated from Dead Coal Pit Areas

폐광지역에서 분리한 quinoline 분해 세균인 Pseudomonas sp. NFQ-1의 특성연구

  • 윤경하 (순천향대학교 자연과학대학 생명과학부) ;
  • 황선영 (순천향대학교 자연과학대학 생명과학부) ;
  • 권오성 (순천향대학교 자연과학대학 생명과학부) ;
  • 오계헌 (순천향대학교 자연과학대학 생명과학부)
  • Published : 2003.06.01

Abstract

The bacterium NFQ-1 capable of utilizing quinoline (2,3-benzopyridine) as the sole source of carbon, nitrogen and energy was enriched and isolated from soil samples of dead coal pit areas. Strain NFQ-1 was identified as Pseudomonas nitroreducens NFQ-1 by BIOLOG system, and assigned to Pseudomonas sp. NFO-1. Pseudomonas sp. NFQ-1 was used with the concentration range of 1 to 10 mM quinoline. Strain NFQ-1 could degrade 2.5 mM quinoline within 9 hours of incubation. Initial pH 8.0 in the culture was reduced to 6.8, and eventually 7.0 as the incubation was proceeding. 2-Hydroxyquinoline, the first intermediate of the degradative pathway, accumulated transiently in the growth medium. The highest concentration of quinoline (15 mM) in this work inhibited cell growth and quinoline degradation. Pseudomonas sp. NFQ-1 was able to utilize various quinoline derivatives and aromatic compounds including 2-hydroxyquinoline, p-comaric acid, benzoic acid, p-cresol, p-hydroxybenzoate, protocatechuic acid, and catechol. The specific activity of catechol oxygenases was determined to approximately 184.7 unit/㎎ for catechol 1.2-dioxygenase and 33.19 unit/㎎ for catechol 2,3-dioxygenase, respectively. As the result, it showed that strain NFQ-1 degraded quinoline via mainly orthp-cleavage pathway, and in partial meta-cleavage pathway.

폐광지역으로부터 quinoline (2,3-benzopyridine)을 유일한 탄소원, 질소원, 그리고 에너지원으로 이용하는 세균 NFQ-1을 농화 배양기법을 통하여 분리하였다. 분리된 세균은 그람음성의 간균으로서 BIOLOG 시험을 통하여 Pseudomonas nitroreducens로 동정되었으며, 본 연구에서는 Pseudomonas sp. NFQ-1으로 명명하였다. Quinoline의 분해는 호기적 조건하의 B-배지에서 Pseudomonas sp. NFQ-1를 이용하여 실시되었다. 균주 NFQ-1 세균은 2.5 mM quinoline을 9시간 이내 완전히 분해하였다. 배양기간 동안 quinoline 분해의 중간대사산물인 2-hydroxyquinoline이 일시적으로 생성되었다가 배양기간 후반부에 사라졌다. 배양의 초기 pH 8.0은 6.8로 감소하다가 배양이 진행됨에 따라 7.0이 되었다. 대상 기질로서 quinoline의 농도가 증가함에 따라 생장곡선에서 유도기가 길어졌으며, 고농도의 quinoline (>15 mM)은 주어진 조건에서 균주의 생장과 quinoline의 분해를 억제하였다. 부가 질소원으로 7.6 mM $(\textrm{NH}_{4})_{2}\textrm{SO}_{4}$의 첨가조건하에서 Pseudomonas sp. NFQ-1은 2-hydroxyquinoline, p-coumaric acid, benzoic acid, p-cresol, p-hydroxybenzoate, protocatechuic acid, catechol 등의 다양한 화합물을 이용할 수 있었으나 일부 화합물들 (예, 6-hydroxyquinoline, 8-hydroxyquinoline, coumarin, indoline, pyridine, lepidine, quinaldine, 4-bydroxycournarin, benzene, salicylic acid, phenol, phthalate)은 탄소원으로 이용되지 못하였다. euinoline의 분해경로를 규명하기 위하여 catechol dioxygenases의 specific activity를 결정하였다. 그 값은 catechol 1,2-dioxygenase에서 약 184.7 U/mg, 그리고 catechol 1,2-dioxygenase에서 약 33.19 U/mg이었다. 그 결과 균주 NFQ-1은 quinoline를 분해하기 위하여 주로 ortho-분해경로를, 그리고 부분적으로 meta-분해경로를 이용하는 것을 보여주었다.

Keywords

References

  1. Microbios v.15 Degradation of quinoline by a soli bacterium Grant, D. J. W.;T. R. Al Najjar
  2. Quinoline alkaloids related to anthranilic acid Grunden, M. J.
  3. Partry's Industrial Hygiene and Toxicology v.11A Heterocyclic and miscellaneous nitrogen compounds Reinhardt, C. F.;M. R. Britteli;G. D. Clayton(ed.);F. E. Clayton(ed.)
  4. Appl. Environ. Microbiol. v.51 Degradation of pyridine by Micrococcus luteus isolated from soil Sims, G. K.;L. E. Sommers;A. Konopka
  5. Cancer Res. v.36 Carcinogenic activity of quinoline in rat liver Hirao, K.;Y. Shinohora;H. Tsuda;S. Fukushima;M. Takahashi;N. Ito
  6. Agr. Biol. Chem. v.42 Structural requirements for mutagenic activity of nitrogen-heterocyclic bases in S. typhimurium test Matsumoto, T.;D. Yoshida;M. Mizusaki;H. Tomita;K. Koshinizu https://doi.org/10.1271/bbb1961.42.861
  7. Mutat. Res. v.66 Chromosomal aberration tests on 29 chemicals combined with S9 mixture in vitro Matsuoka, A.;M. Hayasthi;M. J. Ishidate https://doi.org/10.1016/0165-1218(79)90089-2
  8. Arch. Environ. Contam. Toxicol. v.9 Structure toxicity relationship of selected nitrogen heterocyclic compounds Schmelz, T. W.;M. Casina-Quezada;J. N. Doumont https://doi.org/10.1007/BF01056938
  9. Chem. Biol. Interact. v.29 Binding of quinoline to nucleic acid in a subcellular microsomal system Tada, M.;K. Takahashi;Y. Kawazoe;N. Ito https://doi.org/10.1016/0009-2797(80)90145-3
  10. Biochem. Pharmacol. v.25 Mutagenicity of 8-hydroxyquinoline and related compounds in the Salmonella typhimurium bioassay Talcott, R.;M. Hollstein;E. Wei https://doi.org/10.1016/0006-2952(76)90097-6
  11. Ground Water v.30 Methanogenic biodegradation of creosote contaminants in natural and simulated ground-water exosystems Godsy, E. M.;D. F. Goerlitz;D. Grbic-Galic https://doi.org/10.1111/j.1745-6584.1992.tb01795.x
  12. Environ. Sci. Technol. v.15 Migration through soil of organic solutes in an oil-shake process water Leengeer, J. A.;H. A. Stuber https://doi.org/10.1021/es00094a007
  13. Florida. U.S. Geological Survey Water-Supply Paper 2290. U.S. Geological Survey Investigations of organic contaminants derived from wood-treatment processes in a sand and gravel aquifer near Pensacola Pereira, W. E.;C. E. Rostad;T. J. Leiker;D. M. Updegraff;J. L. Bennett
  14. Appl. Environ. Microbiol. v.56 Microbial degradation of quinoline and methylquinolines Aislabie, J.;A. K. Bej;H. Hurst;S. Othenburger;R. M. Atlas
  15. Arch. Microbiol. v.16 Molybdenum-dependent degradation of quinoline by Pseudomonas putida Chin IK and other aerobic bacteria Blaschke, M.;Kertzer, A.;Schafer, C.;Negel, M.;J. R. Andreesen
  16. Int. Biodeterio. Biodegrad. v.38 Isolation, characterization, and substrate utilization of a quinoline-degradation bacterium O'Loughlin, E. J.;S. R. Kehrmeyer;G. K. Sims https://doi.org/10.1016/S0964-8305(96)00032-7
  17. Appl. Microbiol. v.10 Microbial metabolism of quinoline and related compounds Ⅰ. Isolation and characterization of quinoline-degrading bacteria Schwarz, G.;E. Senghas;A. Erben;B. Schafer;F. Lingens;H. Hoke https://doi.org/10.1016/S0723-2020(88)80035-3
  18. Biol. Chem. Hoppe-Seyler v.370 Microbial metabolism of quinoline and related compounds. Ⅱ. Degradation of quinoline by Pseudomonas fluorescens 3, Pseudomonas putida 86 and Rhodococcus spec. B1 Schwarz, G.;R. Bauder;M. Speer;T.O. Rommel;F. Lingens https://doi.org/10.1515/bchm3.1989.370.2.1183
  19. Appl. Environ. Microbiol. v.51 Microbial transformation of quinoline by a Pseudomonas sp. Shukla, O. P.
  20. Biotech. Bioeng. v.42 Microbial degradation of quinoline: Kinetic studies with Comamonas acidovorans DSM 6426 Miehling, R.;V. Hecht;W. D. Deckwer https://doi.org/10.1002/bit.260420506
  21. Biol. Memoirs. v.13 Microbial transformation and biodegradation of quinoline : Isolation and characterization of quinoline-degrading bacteria and identification of early intermediates Shukla, O. P.
  22. Bergey's Manual of Systemic Bacteriology Krieg, N. R.;J. G. Holt
  23. Methods in Enzymology 17A Pyrocatechase (Pseudomonas) Nakazawa, T.;A. Nakazawa
  24. Methods in Enzymology 17A Metapytocatechase (Pseudonomas) Nozaki, M.
  25. J. Biol. Chem. v.193 The original method Lowry, O. H.;N. J. Rosebrough;A. L. Farr;R. J. Randall
  26. Fermen Bioeng v.71 Estimation of solvent-tolerance of bacteria by the solvent parameter log P Inou, A.;K. Horikoshi https://doi.org/10.1016/0922-338X(91)90109-T
  27. J. Environ. Sci. Health Part A v.26 Degradation of heterocyclic bases 24 by mix Nocardia sp. isolation from soil Pandey, R. A.;S. Sandhyga https://doi.org/10.1080/10934529109375688